Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parkin–phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity

Abstract

RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin–phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of Parkin–pUb complex in the activated state.
Figure 2: Identification of potential ubiquitin-binding regions important for Parkin function.
Figure 3: Parkin activation promotes donor ubiquitin binding at the H3-IBR interface.
Figure 4: Parkin molecules cooperate to facilitate ubiquitin transfer.
Figure 5: A model of Parkin regulation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bonifati, V. et al. Autosomal recessive early onset parkinsonism is linked to three loci: PARK2, PARK6, and PARK7. Neurol. Sci. 23 (Suppl. 2), S59–S60 (2002).

    Article  PubMed  Google Scholar 

  2. Martin, I., Dawson, V.L. & Dawson, T.M. Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet. 12, 301–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Valente, E.M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1 . Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Chung, S.Y. et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation. Stem Cell Reports 7, 664–677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Exner, N., Lutz, A.K., Haass, C. & Winklhofer, K.F. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Narendra, D., Walker, J.E. & Youle, R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 4, a011338 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Walden, H. & Martinez-Torres, R.J. Regulation of Parkin E3 ubiquitin ligase activity. Cell. Mol. Life Sci. 69, 3053–3067 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Dawson, T.M. & Dawson, V.L. The role of parkin in familial and sporadic Parkinson's disease. Mov. Disord. 25, S32–S39 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kahle, P.J. & Haass, C. How does parkin ligate ubiquitin to Parkinson's disease? EMBO Rep. 5, 681–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim, K.L., Dawson, V.L. & Dawson, T.M. Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases? Neurobiol. Aging 27, 524–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Spratt, D.E., Walden, H. & Shaw, G.S. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458, 421–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Spratt, D.E. et al. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat. Commun. 4, 1983 (2013).

    Article  PubMed  Google Scholar 

  14. Stieglitz, B. et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 503, 422–426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lazarou, M. et al. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200, 163–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riley, B.E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Stieglitz, B., Morris-Davies, A.C., Koliopoulos, M.G., Christodoulou, E. & Rittinger, K. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 13, 840–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wenzel, D.M., Lissounov, A., Brzovic, P.S. & Klevit, R.E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, X. & Hunter, T. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23, 886–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beasley, S.A., Hristova, V.A. & Shaw, G.S. Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease. Proc. Natl. Acad. Sci. USA 104, 3095–3100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hristova, V.A., Beasley, S.A., Rylett, R.J. & Shaw, G.S. Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J. Biol. Chem. 284, 14978–14986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaugule, V.K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853–2867 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar, A. et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34, 2506–2521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sauvé, V. et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492–2505 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Trempe, J.F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32, 2099–2112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kane, L.A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2, 120080 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Okatsu, K. et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016 (2012).

    Article  PubMed  Google Scholar 

  32. Shiba-Fukushima, K. et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2, 1002 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moynihan, T.P. et al. The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1. J. Biol. Chem. 274, 30963–30968 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Smit, J.J. et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 31, 3833–3844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Duda, D.M. et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21, 1030–1041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelsall, I.R. et al. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J. 32, 2848–2860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scott, D.C. et al. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166, 1198–1214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caulfield, T.R., Fiesel, F.C. & Springer, W. Activation of the E3 ubiquitin ligase Parkin. Biochem. Soc. Trans. 43, 269–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ham, S.J. et al. Interaction between RING1 (R1) and the ubiquitin-like (UBL) domains is critical for the regulation of Parkin activity. J. Biol. Chem. 291, 1803–1816 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Kazlauskaite, A. et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16, 939–954 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wauer, T., Simicek, M., Schubert, A. & Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lechtenberg, B.C. et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529, 546–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dove, K.K., Stieglitz, B., Duncan, E.D., Rittinger, K. & Klevit, R.E. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. EMBO Rep. 17, 1221–1235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aguirre, J.D., Dunkerley, K.M., Mercier, P. & Shaw, G.S. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc. Natl. Acad. Sci. USA 114, 298–303 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Caulfield, T.R. et al. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLoS Comput. Biol. 10, e1003935 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Im, E., Yoo, L., Hyun, M., Shin, W.H. & Chung, K.C. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biol. 6, 160193 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ordureau, A. et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl. Acad. Sci. USA 112, 6637–6642 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wauer, T. et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34, 307–325 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Müller-Rischart, A.K. et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 49, 908–921 (2013).

    Article  PubMed  Google Scholar 

  55. Ardley, H.C., Tan, N.G., Rose, S.A., Markham, A.F. & Robinson, P.A. Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitin-conjugating enzyme, Ubch7. J. Biol. Chem. 276, 19640–19647 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Wright, J.D., Mace, P.D. & Day, C.L. Noncovalent ubiquitin interactions regulate the catalytic activity of ubiquitin writers. Trends Biochem. Sci. 41, 924–937 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Woodroof, H.I. et al. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biol. 1, 110012 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abdul Rehman, S.A. et al. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63, 146–155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  61. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  62. Bricogne, G. et al. BUSTER 2.11.2 (Global Phasing Ltd., 2011).

  63. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Briere for her expertise and help in collecting and analyzing the sedimentation velocity data. This work was supported by Cancer Research UK (grant 17739 to H.W.), the Medical Research Council (grant MC_UU_12016/12 to H.W.), the EMBO Young Investigator Programme (to H.W.), the Canadian Institutes of Health Research (grant MOP-14606 to G.S.S.), and the Canada Research Chairs Program (G.S.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.K. designed and performed experiments, solved the crystal structures, analyzed data and wrote the manuscript. V.K.C. purified Miro1, made labeled ubiquitin, developed the labeled-ubiquitin-based assay and performed the RING2(Rcat) loading experiments. T.E.C.C. performed the NMR chemical-shift perturbation experiments. K.R.B. conducted analytical ultracentrifugation experiments. R.T. cloned several constructs. C.J., R.S. and A.K. purified various reagents for assays. G.S.S. and H.W. designed the experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Helen Walden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 The UBL and RING1 interface remains associated in the complex structures of Parkin and pUb.

a) Asymmetric Unit of crystal structure of UBLR0RBR and pUb complex showing UBL (green), RING1 (cyan), IBR (brown), REP (yellow), and RING2(Rcat) (red) of one molecule, RING0 (magenta) and pUb (blue) from another molecule. The interface between the two molecules is marked with a solid line. The phosphate group of pUb is shown in stick representation. b) Superposition of UBLR0RBR-pUb complex structure, UBL (green), RING1 (cyan), REP (yellow), with apo structure of UBLR0RBR (grey) (pdb code: 5C1Z). Important residues at UBL-RING1 interface, and the tether connecting IBR and REP are shown as sticks. UBLR0RBR-pUb complex structure showing alternate conformations of flexible loop (62-65) movement is marked with dashed line, Ser65 is shown as stick. c) Superposition of UBLR0RBR-pUb complex structure coloured as in b, with the S65DUBLR0RBR-pUb complex structure (grey). Important residues in the tether and the UBL-IBR interface are shown as sticks in the close-up (right). d) Isothermal Titration Calorimetry assays showing UBL interaction with ΔUBL Parkin tether mutants (Q389A, Y391A, R392A) in the absence (left) and presence (right) of phosphoubiquitin. Tether mutants (Q389A, Y391A, R392A) in ΔUBL Parkin do not rescue the loss of UBL and Parkin association in the presence of pUb). e) Electrostatic charge surface of Parkin showing negatively charged region at the interface of UBL and IBR, Ser65 on UBL is shown as stick. The electrostatic potential is calculated with the program APBS (Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001 98(18):10037-41.). The surface is coloured with a blue to red gradient from +2.5 to −2.5 KbT/e.

Supplementary Figure 2 Phosphoubiquitin binding to Parkin reveals cryptic ubiquitin-binding sites.

a) Comparison of apo structure of UBLR0RBR (left) with UBLR0RBR-pUb complex (right). The surface representation shows the void created between the IBR (brown) and UBL (green) domains upon phosphoubiquitin (blue) binding. For clarity the rest of Parkin is shown in grey, with domains labelled. b) The void created between IBR (brown) and UBL (green) is occupied by a symmetry related molecule 2 of Parkin, mediated by UBL (yellow) of the second molecule. The second Parkin molecule is outlined (left), with the rest of Parkin shown in grey for clarity. A second cartoon view related by a ~90o rotation around the y-axis shows the UBL of molecule 2 (yellow) nestling between the UBL (green) and IBR (brown) of molecule 1. Phosphoubiquitin is shown in blue. The crystal symmetry axis between the two molecules is represented by a dashed line. c) Massive enhancement in ubiquitin chain formation and Parkin autoubiquitination activity of Parkin upon UBLR0RBRCys347 linkage with (M1-UbS65A)3-pUb-3BR probe (left panel). UBLR0RBRCys347 reaction with suicide probes (pUb-3BR/(M1-UbS65A) 3-pUb-3BR) is shown (right panel), reacted species of UBLR0RBR347Cys with suicide probe is marked with *.

Supplementary Figure 3 Phosphoubiquitin binding enables recruitment of the charged E2, UbcH7~Ub.

a) Size-exclusion chromatography of phosphoParkinE321A and pUb complex does not show any shift with UbcH7~Ub isopeptide, WT-phosphoParkin and pUb results in a shift and co-elutes with charged E2, fractions were confirmed by SDS PAGE analysis. b) Isothermal titration calorimetry shows that ParkinE321A associates with phosphoubiquitin with the same affinity as wild-type Parkin.

Supplementary Figure 4 Model of phosphoubiquitin-bound Parkin in complex with donor ubiquitin.

a) The UblR0RBR structure in complex with phosphoubiquitin, coloured as in Figure 1a with all domains labelled, is modelled with a ubiquitin moiety in the H3-IBR binding site. The model is based on a combination of the crystallographically related UBL domain, the HOIP RBR/E2~Ub structure, and the chemical shift perturbations showing the ubiquitin binding site on Parkin. An arrow indicates the route from the tail of the ubiquitin molecule to the catalytic cysteine in the RING2(Rcat) domain. b) Ubiquitination assay following the ubiquitination of Miro1 in the presence of increasing concentrations of inactive UblR0RBR Parkin, or UblR0RBR covalently linked to phosphoubiquitin. Activity is monitored following fluorescently labelled ubiquitin, and a coomassie stained gel shows input levels.

Supplementary Figure 5 Arrangements of domains in RBR modules suggest a common mode of regulation whereby the IBR and RING2(Rcat) of RBRs recruit multiple ubiquitin-like molecules.

a) Structural arrangement of RING1-IBR-RING2(Rcat) Domain in Parkin (upper panel, pdb code 5C1Z), HOIP (middle panel, pdb code 4KBL), and HHARI (lower panel, pdb code 5EDV). b) Autoinhibited structure of HHARI (pdb code 4KBL), proposed E2 binding site and NEDD8 binding site are highlighted in yellow and blue circles, respectively. c) Superposition of H3-IBR of Parkin (brown, PDB code 5C1Z) and HHARI (black, PDB code 4KBL) in the autoinhibited state, compactness between helix (H3) and IBR is marked with an arrow. d) Superposition of H3-IBR of Parkin (brown, UBLR0RBR-pUb complex) and HOIP (cyan, PDB code: 5EDV) in the active state, with overlapping positions for activator ubiquitin (Uballo /pUb, blue) and donor ubiquitin (Ubdon, salmon red). e) Representation of the asymmetric unit of the crystal structure of HOIP in complex with E2~Ub and activator ubiquitin (Uballo) (pdb code 5EDV). The asymmetric unit contains two molecules of HOIP (green, cyan), E2 (yellow), donor ubiquitin (Ubdon, salmon), activator ubiquitin (Uballo, blue circle). RING1, IBR and RING2(Rcat) domains are circled with dashed line, distance between catalytic cysteine of RING2(Rcat), Cys885 (brown circle), and RING1 (P707) of the same molecule is represented by straight solid line. Catalytic cysteine, Cys86, of E2 is represented as black circle. Processive unit of HOIP (marked with dashed line) is formed by RING1-IBR from one molecule of HOIP, RING2(Rcat) from another molecule of HOIP interacting with E2, Ubdon and Uballo, f) IBR (cyan) of HOIP (pdb code 5EDV) interacting with activator ubiquitin (Uballo, blue) and donor ubiquitin (Ubdon, salmon red), left panel.IBR (brown) of Parkin (UBLR0RBR-pUb complex) interacting with pUb (blue) and donor ubiquitin (Ubdon, grey), right panel.g) RING2L/Rcat (green) of HOIP (pdb code 4LJP) interacting with donor ubiquitin (Ubdon, salmon red) and acceptor ubiquitin (pale cyan), left panel. RING2(Rcat) (brown) of Parkin (UBLR0RBR-pUb complex) interacting with donor ubiquitin (Ubdon, grey), right panel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1161 kb)

Supplementary Data Set 1

Uncropped gels (PDF 3784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Chaugule, V., Condos, T. et al. Parkin–phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat Struct Mol Biol 24, 475–483 (2017). https://doi.org/10.1038/nsmb.3400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing