Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Chromatin remodeling: a collaborative effort

Enzymes that alter nucleosome structure or position are at the very center of gene and genome regulation, and understanding how, and to what extent, these diverse activities collaborate and control each other to shape the genome for dynamic regulation is a major challenge. A new study provides an important step in this direction by illustrating the cooperative nature of ATP-dependent chromatin-remodeling systems in mammalian cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Features of Brg1-, Chd4- and Snf2h-containing chromatin-remodeling complexes from mammalian cells.

Katie Vicari

Figure 2: Several scenarios illustrating how two distinct chromatin-remodeling complexes (complex 1 and complex 2) may regulate chromatin accessibility over the same site.

Katie Vicari

References

  1. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  Google Scholar 

  2. Clapier, C.R. & Cairns, B.R. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  Google Scholar 

  3. Hargreaves, D.C. & Crabtree, G.R. Cell Res. 21, 396–420 (2011).

    Article  CAS  Google Scholar 

  4. Wu, J.I., Lessard, J. & Crabtree, G.R. Cell 136, 200–206 (2009).

    Article  CAS  Google Scholar 

  5. Kadoch, C. et al. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  Google Scholar 

  6. Yen, K., Vinayachandran, V. & Pugh, B.F. Cell 154, 1246–1256 (2013).

    Article  CAS  Google Scholar 

  7. Becker, P.B. EMBO J. 21, 4749–4753 (2002).

    Article  CAS  Google Scholar 

  8. Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J. & Wu, C. Genes Dev. 13, 686–697 (1999).

    Article  CAS  Google Scholar 

  9. Erkina, T.Y., Zou, Y., Freeling, S., Vorobyev, V.I. & Erkine, A.M. Nucleic Acids Res. 38, 1441–1449 (2010).

    Article  CAS  Google Scholar 

  10. Petty, E. & Pillus, L. Trends Genet. 29, 621–629 (2013).

    Article  CAS  Google Scholar 

  11. Gkikopoulos, T. et al. Science 333, 1758–1760 (2011).

    Article  CAS  Google Scholar 

  12. Yen, K., Vinayachandran, V., Batta, K., Koerber, R.T. & Pugh, B.F. Cell 149, 1461–1473 (2012).

    Article  CAS  Google Scholar 

  13. Seeber, A., Hauer, M. & Gasser, S.M. Curr. Opin. Genet. Dev. 23, 174–184 (2013).

    Article  CAS  Google Scholar 

  14. Mermoud, J.E., Rowbotham, S.P. & Varga-Weisz, P.D. Cell Cycle 10, 4017–4025 (2011).

    Article  CAS  Google Scholar 

  15. Chambers, A.L. et al. Genes Dev. 26, 2590–2603 (2012).

    Article  CAS  Google Scholar 

  16. Durand-Dubief, M. et al. PLoS Genet. 8, e1002974 (2012).

    Article  CAS  Google Scholar 

  17. Verdaasdonk, J.S., Gardner, R., Stephens, A.D., Yeh, E. & Bloom, K. Mol. Biol. Cell 23, 2560–2570 (2012).

    Article  CAS  Google Scholar 

  18. Gkikopoulos, T. et al. EMBO J. 30, 1919–1927 (2011).

    Article  CAS  Google Scholar 

  19. Hsu, J.M., Huang, J., Meluh, P.B. & Laurent, B.C. Mol. Cell. Biol. 23, 3202–3215 (2003).

    Article  CAS  Google Scholar 

  20. Tsuchiya, E., Hosotani, T. & Miyakawa, T. Nucleic Acids Res. 26, 3286–3292 (1998).

    Article  CAS  Google Scholar 

  21. Vicent, G.P. et al. Genes Dev. 25, 845–862 (2011).

    Article  CAS  Google Scholar 

  22. Gao, H. et al. Proc. Natl. Acad. Sci. USA 106, 11258–11263 (2009).

    Article  CAS  Google Scholar 

  23. Bajpai, R. et al. Nature 463, 958–962 (2010).

    Article  CAS  Google Scholar 

  24. Morris, S.A. et al. Nat. Struct. Mol. Biol. 21, 73–81 (2014).

    Article  CAS  Google Scholar 

  25. Thurman, R.E. et al. Nature 489, 75–82 (2012).

    Article  CAS  Google Scholar 

  26. Hakimi, M.A. et al. Nature 418, 994–998 (2002).

    Article  CAS  Google Scholar 

  27. Moshkin, Y.M. et al. Mol. Cell. Biol. 32, 675–688 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D Varga-Weisz.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga-Weisz, P. Chromatin remodeling: a collaborative effort. Nat Struct Mol Biol 21, 14–16 (2014). https://doi.org/10.1038/nsmb.2748

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing