Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational heterogeneity of the aspartate transporter GltPh

Abstract

GltPh is a Pyrococcus horikoshii homotrimeric Na+-coupled aspartate transporter that belongs to the glutamate transporter family. Each protomer consists of a trimerization domain involved in subunit interaction and a transporting domain with the substrate-binding site. Here, we have studied the conformational changes underlying transport by GltPh using EPR spectroscopy. The trimerization domains form a rigid scaffold, whereas the transporting domains sample multiple conformations, consistent with large-scale movements during the transport cycle. Binding of substrates changed the occupancies of the different conformational states, but the domains remained heterogeneous. The membrane environment favored conformations different from those observed in detergent micelles, but the transporting domain remained structurally heterogeneous in both environments. We conclude that the transporting domains sample multiple conformational states with substantial occupancy regardless of the presence of substrate and coupling ions, consistent with equilibrium constants close to unity between the observed transporter conformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Residues selected for EPR measurements.
Figure 2: Interprotomer distances in the trimerization and the transporting domains in detergent solution.
Figure 3: Intra-protomer distances between the trimerization domain and the transporting domain.
Figure 4: Interprotomer distances in the trimerization and transporting domains in proteoliposomes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tzingounis, A.V. & Wadiche, J.I. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat. Rev. Neurosci. 8, 935–947 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Slotboom, D.J., Konings, W.N. & Lolkema, J.S. Structural features of the glutamate transporter family. Microbiol. Mol. Biol. Rev. 63, 293–307 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Teichman, S., Qu, S. & Kanner, B.I. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters. Proc. Natl. Acad. Sci. USA 106, 14297–14302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groeneveld, M. & Slotboom, D.J. Na+:aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry 49, 3511–3513 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Zerangue, N. & Kavanaugh, M.P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Raunser, S. et al. Structure and function of prokaryotic glutamate transporters from Escherichia coli and Pyrococcus horikoshii. Biochemistry 45, 12796–12805 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ryan, R.M., Compton, E.L. & Mindell, J.A. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284, 17540–17548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryan, R.M. & Mindell, J.A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 14, 365–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Verdon, G. & Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 19, 355–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boudker, O., Ryan, R.M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Groeneveld, M. & Slotboom, D.J. Rigidity of the subunit interfaces of the trimeric glutamate transporter GltT during translocation. J. Mol. Biol. 372, 565–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Steinhoff, H.J. Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction. Biol. Chem. 385, 913–920 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Polyhach, Y., Bordignon, E. & Jeschke, G. Rotamer libraries of spin labelled cysteines for protein studies. Phys. Chem. Chem. Phys. 13, 2356–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Jeschke, G., Sajid, M., Schulte, M. & Godt, A. Three-spin correlations in double electron-electron resonance. Phys. Chem. Chem. Phys. 11, 6580–6591 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Boudker, O. & Verdon, G. Structural perspectives on secondary active transporters. Trends Pharmacol. Sci. 31, 418–426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Focke, P.J., Moenne-Loccoz, P. & Larsson, H.P. Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate. J. Neurosci. 31, 6255–6262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, J., Shrivastava, I.H., Watts, S.D., Bahar, I. & Amara, S.G. Large collective motions regulate the functional properties of glutamate transporter trimers. Proc. Natl. Acad. Sci. USA 108, 15141–15146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Radzwill, N., Gerwert, K. & Steinhoff, H.J. Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys. J. 80, 2856–2866 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pannier, M., Veit, S., Godt, A., Jeschke, G. & Spiess, H.W. Dead-time free measurement of dipole-dipole interactions between electron spins. J. Magn. Reson. 142, 331–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Hänelt, I. et al. Membrane region M2C2 in subunit KtrB of the K+ uptake system KtrAB from Vibrio alginolyticus forms a flexible gate controlling K+ flux: an electron paramagnetic resonance study. J. Biol. Chem. 285, 28210–28219 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Polyhach, Y. et al. High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies. Phys. Chem. Chem. Phys. 14, 10762–10773 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Steinhoff, H.J. et al. Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys. J. 73, 3287–3298 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeschke, G. et al. DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl. Magn. Reson. 30, 473–498 (2006).

    Article  CAS  Google Scholar 

  26. Mackerell, A.D. Jr., Feig, M. & Brooks, C.L. III. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R.H. Duurkens for performing uptake experiments, C. Rickert, D. Klose and J. Klare for help with the EPR measurements and B. Poolman for constructive criticism. This work was supported by a research fellowship and by a research grant from the Deutsche Forschungsgemeinschaft (HA 6322/1-1 to I.H. and STE 640/10, SFB944 to D.W. and H.-J.S.), the Netherlands Organisation for Scientific Research (NWO Vidi and Vici grant to D.J.S.) and the European Union (EDICT program and European Research Council starting grant to D.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

I.H. and D.J.S. designed the experiments. I.H., D.W. and E.B. conducted the experiments. All authors contributed to writing the manuscript and analyzing the data.

Corresponding author

Correspondence to Dirk Jan Slotboom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs 1–4 and Supplementary Table 1 (PDF 6524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hänelt, I., Wunnicke, D., Bordignon, E. et al. Conformational heterogeneity of the aspartate transporter GltPh. Nat Struct Mol Biol 20, 210–214 (2013). https://doi.org/10.1038/nsmb.2471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing