Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells

Abstract

Individual microRNAs (miRNAs) can target hundreds of mRNAs forming networks of presumably cooperating genes. To test this presumption, we functionally screened miRNAs and their targets in the context of dedifferentiation of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Along with the miR-302–miR-294 family, the miR-181 family arose as a previously unidentified enhancer of the initiation phase of reprogramming. Endogenous miR-181 miRNAs were transiently elevated with the introduction of Pou5f1 (also known as Oct4), Sox2 and Klf4 (referred to as OSK), and miR-181 inhibition diminished iPSC colony formation. We tested the functional contribution of 114 individual targets of the two families, revealing 25 genes that normally suppress initiation. Coinhibition of targets cooperatively promoted both the frequency and kinetics of OSK-induced reprogramming. These data establish two of the largest functionally defined networks of miRNA-mRNA interactions and reveal previously unidentified relationships among genes that act together to suppress early stages of reprogramming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A genome-wide screen identifies known and unknown miRNA enhancers of OSK-induced reprogramming.
Figure 2: The miR-181 family is an OSK-activated positive regulator of reprogramming.
Figure 3: miR-294 and miR-181 enhance reprogramming during the early initiation phase.
Figure 4: An unbiased screen reveals previously unidentified direct targets of miR-294 and miR-181 that inhibit initiation of reprogramming.
Figure 5: miR-294 and miR-181 alter both distinct and common properties of reprogramming.
Figure 6: miRNA-targeted genes cooperate to reduce both frequency and rate of reprogramming.
Figure 7: MiR-294 and miR-181 targets converge on cooperating pathways and processes to enhance reprogramming.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Fabian, M.R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Bartel, D.P. Review MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Leung, A.K. et al. Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat. Struct. Mol. Biol. 18, 237–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Subramanyam, D. & Blelloch, R. From microRNAs to targets: pathway discovery in cell fate transitions. Curr. Opin. Genet. Dev. 21, 498–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Christodoulou, F. et al. Ancient animal microRNAs and the evolution of tissue identity. Nature 463, 1084–1088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Polo, J.M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Judson, R.L., Babiarz, J.E., Venere, M. & Blelloch, R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol. 27, 459–461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29, 443–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao, B. et al. MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J. Biol. Chem. 286, 17359–17364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyoshi, N. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Banito, A. et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 23, 2134–2139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, S. et al. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells 31, 259–268 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Z., Yang, C., Nakashima, K. & Rana, T.M. Small RNA-mediated regulation of iPS cell generation. EMBO J. 30, 823–834 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin, S.-L. et al. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res. 39, 1054–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Wernig, M., Meissner, A., Cassady, J.P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, X.D. et al. The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments. J. Biomol. Screen. 12, 497–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Pfaff, N. et al. miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO Rep. 12, 1153–1159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Houbaviy, H.B., Murray, M.F. & Sharp, P.A. Embryonic stem cell-specific MicroRNAs. Dev. Cell 5, 351–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, J. et al. Synergetic cooperation of microRNAs with transcription factors in iPS cell generation. PLoS ONE 7, e40849 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melton, C., Judson, R.L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O'loghlen, A. et al. MicroRNA Regulation of Cbx7 Mediates a Switch of Polycomb Orthologs during ESC Differentiation. Cell. Stem Cell 10, 33–46 (2012).

    CAS  Google Scholar 

  34. Shi, R. & Chiang, V. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Dunning, M.J., Smith, M.L., Ritchie, M.E. & Tavaré, S. beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 23, 2183–2184 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Smyth, G.K. Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor 397–420 (2005).

  37. Poliseno, L. et al. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci. Signal. 3, ra29 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cichocki, F. et al. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J. Immunol. 187, 6171–6175 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ji, J. et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50, 472–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. et al. Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30, 1470–1478 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, B. et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29, 1787–1797 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikkelsen, T. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y. et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 40, 1478–1483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marson, A. et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3, 132–135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maherali, N. & Hochedlinger, K. Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 19, 1718–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ichida, J.K. et al. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Stem Cells 5, 491–503 (2009).

    CAS  Google Scholar 

  48. Redmer, T. et al. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep. 12, 720–726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Veeman, M.T., Slusarski, D.C., Kaykas, A., Louie, S.H. & Moon, R.T. Zebrafish Prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Kohn, A.D. et al. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J. Biol. Chem. 273, 11937–11943 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Yu, Y. et al. Stimulation of somatic cell reprogramming by Eras-Akt-Foxo1 signaling axis. Stem Cells doi:10.1002/stem.1447 (14 June 2013).

    Article  CAS  PubMed  Google Scholar 

  52. Liao, J. et al. Inhibition of PTEN tumor suppressor promotes the generation of induced pluripotent stem cells. Mol. Ther. 21, 1242–1250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Menendez, S., Camus, S. & Belmonte, J.C.I. p53: Guardian of reprogramming. Cell Cycle 9, 3887–3891 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Vazquez-Martin, A. et al. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle 11, 974–989 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Jin, L. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jayawardena, T.M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yoo, A.S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nam, Y. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl. Acad. Sci. USA 110, 5588–5593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park, C.Y., Choi, Y.S. & McManus, M.T. Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 19, R169–R175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ebert, M.S. & Sharp, P.A. Roles for MicroRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Belair, M. Cook, R. Krishnakumar, M. La Russa, M. Shveygert and other members of the Blelloch laboratory for critical reading of the manuscript, A. Amiet (Dharmacon Thermo Scientific) for providing miRNA and siRNA libraries, M. McMahon (University of California, San Francisco) for AKT expression constructs, H. Zhang for assistance with the high-content analysis, J. Paquette, R. Bell and A. Diaz for advice concerning our statistical methods, A. Shenoy for assistance with bioinformatics, and M. Kissner for assistance with flow cytometry. This work was supported by funds to R.B. from US National Institutes of Health (R01:GM101180), the Leona M. and Harry B. Helmsley Charitable Trust (09PG-T1D002) and the California Institute of Regenerative Medicine (RN2-00906-1). R.L.J. was supported by a US National Science Foundation graduate research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.L.J. contributed to data in Figures 1,2,3,4a–e,5,6,7a,f,g and Supplementary Figures 2–6. T.S.G. contributed to data in Figures 4d,f and 7b–e and Supplementary Figures 1, 2, 4 and 7. R.J.P. contributed to data in Figures 2b and Supplementary Figures 1 and 2. R.B. and R.L.J. conceived the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Robert Blelloch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 1603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Judson, R., Greve, T., Parchem, R. et al. MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol 20, 1227–1235 (2013). https://doi.org/10.1038/nsmb.2665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2665

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing