Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions

Abstract

It has become almost axiomatic that protein folding and assembly are dominated by the hydrophobic effect. The contributions from this, and other, hydrophilic interactions can now be better distinguished by direct measurement of forces between proteins. Here we report the measurement of forces between triple helices of type I collagen at different temperatures, pH and solute concentrations. We separate repulsive and attractive components of the net force and analyze the origin of the attraction responsible for the collagen self-assembly. In this case the role of the hydrophobic effect appears to be negligible. Instead, water-mediated hydrogen bonding between polar residues is the most consistent explanation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Makhatadze, G.I. & Privalov, P.L. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. J. molec. Biol. 232, 639–659 (1993).

    Article  CAS  Google Scholar 

  2. Privalov, P.L. & Makhatadze, G.I. Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J. molec. Biol. 232, 660–679 (1993).

    Article  CAS  Google Scholar 

  3. Sturtevant, J.M. The thermodynamic effects of protein mutations. Curr. Opin. struct. Biol. 4, 69–78 (1994).

    Article  CAS  Google Scholar 

  4. Sharp, K.A. & Honig, B. Electrostatic interactions in macromolecules - Theory and applications. A. Rev. Biophys. biophys. Chem. 19, 301–332 (1990).

    Article  CAS  Google Scholar 

  5. Novotny, J. & Sharp, K. Electrostatic fields in antibodies and antibody antigen complexes. Prog. Biophys. molec. Biol. 58, 203–224 (1992).

    Article  CAS  Google Scholar 

  6. Kauzmann, W. Some factors in the interpretation of protein denaturation. Adv. prot. Chem. 39, 191–234 (1988).

    Google Scholar 

  7. Privalov, P.L. & Gill, S.J. Stability of protein structure and hydrophobic interaction. Adv. prot. Chem. 39, 191–234 (1988).

    CAS  Google Scholar 

  8. Dill, K.A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  Google Scholar 

  9. Parsegian, V.A., Rand, R.P., Fuller, N.L. & Rau, D.C. Osmotic stress for the direct measurement of intermolecular forces. Meths. Enzymol. 127, 400–416 (1986).

    Article  CAS  Google Scholar 

  10. Leikin, S., Parsegian, V.A., Rau, D.C. & Rand, R.P. Hydration forces. A. Rev. phys. Chem. 44, 369–395 (1993).

    Article  CAS  Google Scholar 

  11. Rand, R.P. & Parsegian, V.A. Hydration forces between phospholipid bilayers. Biochim. biophys. Acta. 988, 351–376 (1989).

    Article  CAS  Google Scholar 

  12. Rau, D.C., Lee, B.K. & Parsegian, V.A. Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices. Proc. natn. Acad. Sci. U.S.A. 81, 2621–2625 (1984).

    Article  CAS  Google Scholar 

  13. Rau, D.C. & Parsegian, V.A. Direct measurement of forces between linear polysaccharides xanthan and schizophyllan. Science 249, 1278–1281 (1990).

    Article  CAS  Google Scholar 

  14. Veis, A. & Pine, K. Collagen Fibrillogenesis. in Collagen (ed. Nimni, M.E.) 113–137 (CRC Press, Inc., Boca Raton, Florida, 1988).

    Google Scholar 

  15. Ripamonti, A., Roveri, N., Braga, D., Hulmes, D.J.S., Miller, A. & Timmins, P.A. Effects of pH and ionic strength on the structure of collagen fibrils. Biopolymers 19, 965–975 (1980).

    Article  CAS  Google Scholar 

  16. Li, S.-T. & Katz, E.P. An electrostatic model for collagen fibrils. The interaction of reconstituted collagen with Ca++, Na+, and Cl. Biopolymers 15, 1439–1460 (1976).

    Article  CAS  Google Scholar 

  17. Na, G.C., Butz, L.J., Bailey, D.G. & Carroll, R.J. In vitro collagen fibril assembly in glycerol solution: Evidence for a helical cooperative mechanism involving microfibrils. Biochemistry 25, 958–966 (1986).

    Article  CAS  Google Scholar 

  18. Tanaka, S., Avigad, G., Brodsky B. & Eikenberry, E.F. Glycation induces expansion of the molecular packing of collagen. J. molec. Biol. 203, 495–505 (1988).

    Article  CAS  Google Scholar 

  19. Rathi, A.N., Padmavathi, S. & Chandrakasan, G. Influence of monosaccharides on the fibrillogenesis of type I collagen. Bioch. med. metabol. Biol. 42, 209–215 (1989).

    Article  CAS  Google Scholar 

  20. Hulmes, D.J.S., Miller, A., Parry, D.A. D., Piez, K.A. & Woodhead-Galloway, J. Analysis of the primary structure of collagen for the origins of molecular packing. J. molec. Biol. 79, 137–148 (1973).

    Article  CAS  Google Scholar 

  21. Piez, K.A. & Trus, B.L. Microfibrillar structure and packing of collagen: Hydrophobic interactions. J. molec. Biol. 110, 701–704 (1977).

    Article  CAS  Google Scholar 

  22. Piez, K.A. & Trus, B.L. Sequence regularities and packing of collagen molecules. J. molec. Biol. 122, 419–432 (1978).

    Article  CAS  Google Scholar 

  23. Leikin, S., Rau, D.C. & Parsegian, V.A. Direct measurement of forces between self-assembled proteins. Temperature-dependent exponential forces between collagen triple helices. Proc. natn. Acad. Sci. U.S.A. 91, 276–280 (1994).

    Article  CAS  Google Scholar 

  24. Selinger, J.V. & Bruinsma, R.F. Hexagonal and nematic phases of chains. I. Correlation functions. Phys. Rev. A43, 2910–2921 (1991).

    Article  Google Scholar 

  25. Hentschke, R. & Herzfeld, J. Isotropic, neumatic, and columnar ordering in systems of persistent flexible hard rods. Phys. Rev. A44, 1148–1155 (1991).

    Article  Google Scholar 

  26. McIntosh, T.J. & Simon, S.A. Hydration and steric pressures between phospholipid bilayers. A. Rev. Biophys. biomolec. Struct. 23, 27–51 (1994).

    Article  CAS  Google Scholar 

  27. Israelachvili, J.N. Intermolecular and surface forces (Academic Press, London, 1991).

    Google Scholar 

  28. Bella, J., Eaton, M., Brodsky, B. & Berman H., M. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266, 75–81 (1994).

    Article  CAS  Google Scholar 

  29. Fraser, R.D. B., MacRae, T.P., Miller, A. & Suzuki, E. Molecular conformation and packing in collagen fibrils. J. molec. Biol. 167, 497–521 (1983).

    Article  CAS  Google Scholar 

  30. Berendsen, H.J.C. & Migchelsen, C. Hydration structure of fibrous macromolecules. Ann. N.Y. Acad. Sci. 125, 365–379 (1965).

    Article  CAS  Google Scholar 

  31. Gerlsma, S.Y. & Stuur, E.R. The effect of polyhydric and monohydric alcohols on the heat-induced reversible denaturation of lysozyme and ribonuclease. Int. J. peptide prot. Res. 4, 377–383 (1972).

    Article  CAS  Google Scholar 

  32. Lakshmi, T.S. & Nandi, P.K. Effects of sugar solutions on the activity coefficients of aromatic amino acids and their N-acetyl ethyl esters. J. phys. Chem. 80, 249–252 (1976).

    Article  CAS  Google Scholar 

  33. Gekko, K. Mechanism of protein stabilization by polyols: Thermodynamics of transfer of amino acids and proteins from water to aqueous polyol solutions. in Ions and Molecules in Solution (eds Tanaka, N., Ohtaki, H. & Tamamushi, R.) 339–358 (Elsevier, Amsterdam-Oxford-New York; 1983).

    Google Scholar 

  34. Ben-Naim, A. Hydrophobic Interactions (Plenum, New York, 1980).

    Book  Google Scholar 

  35. Mahanty, J. & Ninham, B.W. Dispersion forces. (Academic Press, London, 1976).

    Google Scholar 

  36. Leikin, S., Rau, D.C. & Parsegian, V.A. Measured entropy and enthalpy of hydration as a function of distance between DNA double helices. Phys. Rev. A44, 5272–5278 (1991).

    Article  Google Scholar 

  37. Leikin, S. & Parsegian, V.A. Temperature-induced complementarity as a mechanism for biomolecular assembly. Prot. Struct. Func. Genet. 19, 73–76 (1994).

    Article  CAS  Google Scholar 

  38. O'Brien, F.E.M. The control of humidity by saturated salt solutions. J. Sci. Instr. 21, 73–76 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leikin, S., Rau, D. & Parsegian, V. Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat Struct Mol Biol 2, 205–210 (1995). https://doi.org/10.1038/nsb0395-205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0395-205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing