Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36

Abstract

Several lines of recent evidence support a role for chromatin in splicing regulation. Here, we show that splicing can also contribute to histone modification, which implies bidirectional communication between epigenetic mechanisms and RNA processing. Genome-wide analysis of histone methylation in human cell lines and mouse primary T cells reveals that intron-containing genes are preferentially marked with histone H3 Lys36 trimethylation (H3K36me3) relative to intronless genes. In intron-containing genes, H3K36me3 marking is proportional to transcriptional activity, whereas in intronless genes, H3K36me3 is always detected at much lower levels. Furthermore, splicing inhibition impairs recruitment of H3K36 methyltransferase HYPB (also known as Setd2) and reduces H3K36me3, whereas splicing activation has the opposite effect. Moreover, the increase of H3K36me3 correlates with the length of the first intron, consistent with the view that splicing enhances H3 methylation. We propose that splicing is mechanistically coupled to recruitment of HYPB/Setd2 to elongating RNA polymerase II.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of H3K36 trimethylation in intron-containing and intronless genes.
Figure 2: In an intronless gene, H3K36me3 remains low irrespective of transcriptional activation.
Figure 3: H3K36me3 is highly dynamic in intron-containing genes.
Figure 4: Splicing inhibition reduces H3K36me3 and HYPB/Setd2 recruitment in intron-containing genes.
Figure 5: Exon inclusion by alternative splicing increases HYPB/Setd2 recruitment and H3K36me3.
Figure 6: H3K36me3 does not mirror Ser2P Pol II occupancy.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Shi, Y. & Whetstine, J.R. Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Li, J., Moazed, D. & Gygi, S.P. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J. Biol. Chem. 277, 49383–49388 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Li, B., Howe, L., Anderson, S., Yates, J.R. III & Workman, J.L. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 8897–8903 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654–663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Joshi, A.A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3–K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971–978 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Keogh, M.C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Li, B. et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050–1054 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Li, B. et al. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev. 21, 1422–1430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edmunds, J.W., Mahadevan, L.C. & Clayton, A.L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spies, N., Nielsen, C.B., Padgett, R.A. & Burge, C.B. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 36, 245–254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 1732–1741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huff, J.T., Plocik, A.M., Guthrie, C. & Yamamoto, K.R. Reciprocal intronic and exonic histone modification regions in humans. Nat. Struct. Mol. Biol. 17, 1495–1499 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schor, I.E., Rascovan, N., Pelisch, F., Allo, M. & Kornblihtt, A.R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl. Acad. Sci. USA 106, 4325–4330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alló, M. et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16, 717–724 (2009).

    Article  PubMed  Google Scholar 

  21. Saint-André, V., Batsche, E., Rachez, C. & Muchardt, C. Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 18, 337–344 (2011).

    Article  PubMed  Google Scholar 

  22. Sims, R.J. III et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luco, R.F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koch, F. et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. published online, doi:10.1038/nsmb.2085 (17 July 2011).

  25. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Strahl, B.D. et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22, 1298–1306 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bannister, A.J. et al. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280, 17732–17736 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Werven, F.J., van Teeffelen, H.A., Holstege, F.C. & Timmers, H.T. Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat. Struct. Mol. Biol. 16, 1043–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Mollet, I., Barbosa-Morais, N.L., Andrade, J. & Carmo-Fonseca, M. Diversity of human U2AF splicing factors. FEBS J. 273, 4807–4816 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Grosso, A.R. et al. Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res. 36, 4823–4832 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, G. et al. Distinct localization of histone H3 acetylation and H3–K4 methylation to the transcription start sites in the human genome. Proc. Natl. Acad. Sci. USA 101, 7357–7362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Albert, B.J. et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol. Cancer Ther. 8, 2308–2318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell. Biol. 14, 7219–7225 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. West, S., Proudfoot, N.J. & Dye, M.J. Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol. Cell 29, 600–610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dye, M.J., Gromak, N. & Proudfoot, N.J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Pandya-Jones, A. & Black, D.L. Co-transcriptional splicing of constitutive and alternative exons. RNA 15, 1896–1908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, X.J. et al. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J. Biol. Chem. 280, 35261–35271 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Konig, H., Ponta, H. & Herrlich, P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 17, 2904–2913 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Batsche, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13, 22–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Kizer, K.O. et al. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25, 3305–3316 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, M. et al. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc. Natl. Acad. Sci. USA 102, 17636–17641 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vojnic, E., Simon, B., Strahl, B.D., Sattler, M. & Cramer, P. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J. Biol. Chem. 281, 13–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Fuda, N.J., Ardehali, M.B. & Lis, J.T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Allemand, E., Batsche, E. & Muchardt, C. Splicing, transcription, and chromatin: a menage a trois. Curr. Opin. Genet. Dev. 18, 145–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Volloch, V. & Housman, D. Terminal differentiation of murine erythroleukemia cells: physical stabilization of end-stage cells. J. Cell Biol. 93, 390–394 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chapman, R.D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Rhead, B. et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res. 38, D613–D619 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Gautier, L., Cope, L., Bolstad, B.M. & Irizarry, R.A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. de Almeida, S.F., Garcia-Sacristan, A., Custodio, N. & Carmo-Fonseca, M. A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res. 38, 8015–8026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nelson, J.D., Denisenko, O., Sova, P. & Bomsztyk, K. Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 34, e2 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Koide (University of Pittsburgh), for kindly providing the meayamycin used in this study. We are also thankful to S. Marinho (Faculdade de Medicina, Universidade de Lisboa) for technical assistance. This work was supported by grants from Fundação para a Ciência e Tecnologia (PTDC-BIA-BCM-101575-2008 to M.C.-F. and PTDC-BIA-BCM-111451-2009 to S.F.deA.) and the European Commission (MRTN-CT-2006-035733 to M.C.-F. and P.F.). S.F.deA. and A.R.G. are supported by fellowships from Fundação para a Ciência e Tecnologia (SFRH-BPD-34679-2007 and SFRH-BPD-62911-2009). Work in the P.F. laboratory is supported by institutional grants from Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS), and by specific grants from Fondation Princesse Grace de Monaco, the Agence Nationale de la Recherche (ANR), the Institut National du Cancer (INCa) and the Commission of the European Communities. F.K. was supported by a Marie Curie research training fellowship (MRTN-CT-2006-035733); and is now supported by Association pour la Recherche sur le Cancer (ARC). R.F. was supported by Marseille-Nice Genopole; and is now supported by a grant from CNRS.

Author information

Authors and Affiliations

Authors

Contributions

S.F.deA. and M.C.-F. conceived the project and designed the experiments. S.F.deA., S.C., J.A., H.L. conducted and analyzed the wet-lab experiments. F.K., I.G., J.-C.A. and P.F. conceived the framework of the ChIP-seq studies. F.K. and J.-C.A. designed the ChIP-seq experiments. D.E. produced and provided the Ser2P and Ser5P Pol II antibodies. R.F. and F.K. carried out the bioinformatics preprocessing of ChIP-seq data. ChIP-seq and RNA-seq preprocessing materials were prepared by F.K.. M.G. and I.G. conducted all ChIP-seq– and RNA-sequencing experiments. A.R.G carried out the bioinformatic analysis of microarray, ChIP-seq and RNA-seq data. S.F.deA., A.R.G. and M.C.-F. wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jean-Christophe Andrau, Pierre Ferrier or Maria Carmo-Fonseca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 3170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida, S., Grosso, A., Koch, F. et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 18, 977–983 (2011). https://doi.org/10.1038/nsmb.2123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing