Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent

Abstract

Because polyglutamine (polyQ) aggregate formation has been implicated as playing an important role in expanded CAG repeat diseases, it is important to understand the biophysics underlying the initiation of aggregation. Previously, we showed that relatively long polyQ peptides aggregate by nucleated growth polymerization and a monomeric critical nucleus. We show here that over a short range of repeat lengths, from Q23 to Q26, the size of the critical nucleus for aggregation increases from monomeric to dimeric to tetrameric. This variation in nucleus size suggests a common duplex antiparallel β-sheet framework for the nucleus, and it further supports the feasibility of an organized monomeric aggregation nucleus for longer polyQ repeat peptides. The data also suggest that a change in the size of aggregation nuclei may have a role in the pathogenicity of polyQ expansion in this series of familial neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of AT7NT on polyQ aggregation kinetics.
Figure 2: Transmission electron micrograph images obtained for different peptides incubated in PBS buffer at 37°C.
Figure 3: Aggregation kinetics analysis of the peptide SFQ37P10K2.
Figure 4: Aggregation kinetics of peptide K2Q37K2 in PBS at 37°C.
Figure 5: DLS analysis of the aggregation reaction of K2Q23K2 at 215 μM.
Figure 6: Kinetic analysis of K2Q23K2 by sedimentation assay.
Figure 7: Log-log plots of initial reaction rates versus initial concentration.
Figure 8: Further nucleation kinetics analysis of K2Q23K2.
Figure 9: Models of nucleated growth polymerization.

Similar content being viewed by others

References

  1. Bates, G.P. & Benn, C. The polyglutamine diseases. in Huntington's Disease (eds. Bates, G.P., Harper, P.S. & Jones, L.) 429–472 (Oxford University Press, Oxford, UK, 2002).

  2. Ross, C.A. & Poirier, M.A. Opinion: What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 6, 891–898 (2005).

    Article  CAS  Google Scholar 

  3. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  4. Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182 (2001).

    Article  CAS  Google Scholar 

  5. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  6. Chen, S., Ferrone, F. & Wetzel, R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99, 11884–11889 (2002).

    Article  CAS  Google Scholar 

  7. Bhattacharyya, A.M., Thakur, A.K. & Wetzel, R. Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc. Natl. Acad. Sci. USA 102, 15400–15405 (2005).

    Article  CAS  Google Scholar 

  8. Poirier, M.A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    Article  CAS  Google Scholar 

  9. Wacker, J.L., Zareie, M.H., Fong, H., Sarikaya, M. & Muchowski, P.J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat. Struct. Mol. Biol. 11, 1215–1222 (2004).

    Article  CAS  Google Scholar 

  10. Thakur, A.K. et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 16, 380–389 (2009).

    Article  CAS  Google Scholar 

  11. Bulone, D., Masino, L., Thomas, D.J., San Biagio, P.L. & Pastore, A. The interplay between PolyQ and protein context delays aggregation by forming a reservoir of protofibrils. PLoS One 1, e111 (2006).

    Article  Google Scholar 

  12. Ignatova, Z., Thakur, A.K., Wetzel, R. & Gierasch, L.M. In-cell aggregation of a polyglutamine-containing chimera is a multistep process initiated by the flanking sequence. J. Biol. Chem. 282, 36736–36743 (2007).

    Article  CAS  Google Scholar 

  13. de Chiara, C., Menon, R.P., Dal Piaz, F., Calder, L. & Pastore, A. Polyglutamine is not all: the functional role of the AXH domain in the ataxin-1 protein. J. Mol. Biol. 354, 883–893 (2005).

    Article  CAS  Google Scholar 

  14. Ellisdon, A.M., Thomas, B. & Bottomley, S.P. The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J. Biol. Chem. 281, 16888–16896 (2006).

    Article  CAS  Google Scholar 

  15. Bhattacharyya, A. et al. Oligoproline effects on polyglutamine conformation and aggregation. J. Mol. Biol. 355, 524–535 (2006).

    Article  CAS  Google Scholar 

  16. Gu, X. et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 64, 828–840 (2009).

    Article  CAS  Google Scholar 

  17. Romero, P., Obradovic, Z. & Dunker, A.K. Natively disordered proteins: functions and predictions. Appl. Bioinformatics 3, 105–113 (2004).

    Article  CAS  Google Scholar 

  18. Mohan, A. et al. Analysis of molecular recognition features (MoRFs). J. Mol. Biol. 362, 1043–1059 (2006).

    Article  CAS  Google Scholar 

  19. Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274 (1999).

    Article  CAS  Google Scholar 

  20. Thakur, A.K. & Wetzel, R. Mutational analysis of the structural organization of polyglutamine aggregates. Proc. Natl. Acad. Sci. USA 99, 17014–17019 (2002).

    Article  CAS  Google Scholar 

  21. Slepko, N. et al. Normal-repeat-length polyglutamine peptides accelerate aggregation nucleation and cytotoxicity of expanded polyglutamine proteins. Proc. Natl. Acad. Sci. USA 103, 14367–14372 (2006).

    Article  CAS  Google Scholar 

  22. Jayaraman, M., Kodali, R. & Wetzel, R. The impact of ataxin-1-like histidine insertions on polyglutamine aggregation. Protein Eng. Des. Sel. 22, 469–478 (2009).

    Article  CAS  Google Scholar 

  23. Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A.L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them intact during degradation of polyglutamine-containing proteins. Mol. Cell 14, 95–104 (2004).

    Article  CAS  Google Scholar 

  24. Kirkitadze, M.D., Condron, M.M. & Teplow, D.B. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J. Mol. Biol. 312, 1103–1119 (2001).

    Article  CAS  Google Scholar 

  25. Lee, C.C., Walters, R.H. & Murphy, R.M. Reconsidering the mechanism of polyglutamine peptide aggregation. Biochemistry 46, 12810–12820 (2007).

    Article  CAS  Google Scholar 

  26. Chen, S. & Wetzel, R. Solubilization and disaggregation of polyglutamine peptides. Protein Sci. 10, 887–891 (2001).

    Article  CAS  Google Scholar 

  27. Wetzel, R. Protein folding and aggregation in the expanded polyglutamine repeat diseases. in The Protein Folding Handbook (eds Buchner, J. & Kiefhaber, T.) Part II, 1170–1214 (Wiley-VCH, Weinheim, 2005).

  28. O'Nuallain, B. et al. Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol. 413, 34–74 (2006).

    Article  CAS  Google Scholar 

  29. Legleiter, J. et al. Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J. Biol. Chem. 285, 14777–14790 (2010).

    Article  CAS  Google Scholar 

  30. Heller, J. et al. Solid-state NMR studies of the prion protein H1 fragment. Protein Sci. 5, 1655–1661 (1996).

    Article  CAS  Google Scholar 

  31. Chen, S., Berthelier, V., Hamilton, J.B., O'Nuallain, B. & Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399 (2002).

    Article  CAS  Google Scholar 

  32. Jayaraman, M., Thakur, A.K., Kar, K., Kodali, R. & Wetzel, R. Assays for studying nucleated aggregation of polyglutamine proteins. Methods published online, doi:10.1016/j.ymeth.2011.01.001 (11 January 2011).

  33. Frieden, C. Protein aggregation processes: in search of the mechanism. Protein Sci. 16, 2334–2344 (2007).

    Article  CAS  Google Scholar 

  34. O'Nuallain, B., Shivaprasad, S., Kheterpal, I. & Wetzel, R. Thermodynamics of Aβ(1–40) amyloid fibril elongation. Biochemistry 44, 12709–12718 (2005).

    Article  CAS  Google Scholar 

  35. Cannon, M.J., Williams, A.D., Wetzel, R. & Myszka, D.G. Kinetic analysis of β-amyloid fibril elongation. Anal. Biochem. 328, 67–75 (2004).

    Article  CAS  Google Scholar 

  36. Ferrone, F.A. Nucleation: the connections between equilibrium and kinetic behavior. Methods Enzymol. 412, 285–299 (2006).

    Article  CAS  Google Scholar 

  37. Tam, S. et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 16, 1279–1285 (2009).

    Article  CAS  Google Scholar 

  38. Arvinte, T. Human calcitonin fibrillogenesis. in Ciba Foundation Symp. 199—The Nature and Origin of Amyloid Fibrils (ed. Bock, G.R.) 90–97 (Wiley, New York, 1996).

  39. Collins, S.R., Douglass, A., Vale, R.D. & Weissman, J.S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004).

    Article  Google Scholar 

  40. Frankenfield, K.N., Powers, E.T. & Kelly, J.W. Influence of the N-terminal domain on the aggregation properties of the prion protein. Protein Sci. 14, 2154–2166 (2005).

    Article  CAS  Google Scholar 

  41. Xue, W.F., Homans, S.W. & Radford, S.E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. USA 105, 8926–8931 (2008).

    Article  CAS  Google Scholar 

  42. Walters, R.H. & Murphy, R.M. Examining polyglutamine peptide length: a connection between collapsed conformations and increased aggregation. J. Mol. Biol. 393, 978–992 (2009).

    Article  CAS  Google Scholar 

  43. Khare, S.D., Ding, F., Gwanmesia, K.N. & Dokholyan, N.V. Molecular origin of polyglutamine aggregation in neurodegenerative diseases. PLOS Comput. Biol. 1, 230–235 (2005).

    Article  CAS  Google Scholar 

  44. Marchut, A.J. & Hall, C.K. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations. Proteins 66, 96–109 (2007).

    Article  CAS  Google Scholar 

  45. Smith, M.H. et al. Polyglutamine fibrils are formed using a simple designed beta-hairpin model. Proteins 78, 1971–1979 (2010).

    Article  CAS  Google Scholar 

  46. Sharma, D., Shinchuk, L.M., Inouye, H., Wetzel, R. & Kirschner, D.A. Polyglutamine homopolymers having 8–45 residues form slablike β-crystallite assemblies. Proteins 61, 398–411 (2005).

    Article  CAS  Google Scholar 

  47. Sikorski, P. & Atkins, E. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6, 425–432 (2005).

    Article  CAS  Google Scholar 

  48. Crick, S.L., Jayaraman, M., Frieden, C., Wetzel, R. & Pappu, R.V. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc. Natl. Acad. Sci. USA 103, 16764–16769 (2006).

    Article  CAS  Google Scholar 

  49. Dougan, L., Li, J.Y., Badilla, C.L., Berne, B.J. & Fernandez, J.M. Single homopolypeptide chains collapse into mechanically rigid conformations. Proc. Natl. Acad. Sci. USA 106, 12605–12610 (2009).

    Article  CAS  Google Scholar 

  50. Wang, X., Vitalis, A., Wyczalkowski, M.A. & Pappu, R.V. Characterizing the conformational ensemble of monomeric polyglutamine. Proteins 63, 297–311 (2006).

    Article  CAS  Google Scholar 

  51. Starikov, E.B., Lehrach, H. & Wanker, E.E. Folding of oligoglutamines: a theoretical approach based upon thermodynamics and molecular mechanics. J. Biomol. Struct. Dyn. 17, 409–427 (1999).

    Article  CAS  Google Scholar 

  52. Esposito, L., Paladino, A., Pedone, C. & Vitagliano, L. Insights into structure, stability, and toxicity of monomeric and aggregated polyglutamine models from molecular dynamics simulations. Biophys. J. 94, 4031–4040 (2008).

    Article  CAS  Google Scholar 

  53. Lakhani, V.V., Ding, F. & Dokholyan, N.V. Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences. PLOS Comput. Biol. 6, e1000772 (2010).

    Article  Google Scholar 

  54. Nagai, Y. et al. A toxic monomeric conformer of the polyglutamine protein. Nat. Struct. Mol. Biol. 14, 332–340 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge access to the PONDR® analysis, provided by Molecular Kinetics. We thank G. Calero for access to his dynamic light-scattering instrument. EMs were collected in the University of Pittsburgh School of Medicine Structural Biology Department's EM facility administered by J. Conway and A. Makhov. We gratefully acknowledge funding support from US National Institutes of Health grants R01 AG019322 and R21 AG033757 (R.W.).

Author information

Authors and Affiliations

Authors

Contributions

K.K., M.J. and B.S. purified the peptides, determined and analyzed the aggregation kinetics and obtained dynamic light-scattering data on aggregation time points. R.K. obtained the EM and FTIR data. R.W. wrote the paper. All authors contributed to study design, data interpretation and improving the manuscript.

Corresponding author

Correspondence to Ronald Wetzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, K., Jayaraman, M., Sahoo, B. et al. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol 18, 328–336 (2011). https://doi.org/10.1038/nsmb.1992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing