Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the molecular evolution of SRP-GTPase activation by protein

Abstract

Small G proteins have key roles in signal transduction pathways. They are switched from the signaling 'on' to the non-signaling 'off' state when GTPase-activating proteins (GAPs) provide a catalytic residue. The ancient signal recognition particle (SRP)-type GTPases form GTP-dependent homo- and heterodimers and deviate from the canonical switch paradigm in that no GAPs have been identified. Here we show that the YlxH protein activates the SRP-GTPase FlhF. The crystal structure of the Bacillus subtilis FlhF–effector complex revealed that the effector does not contribute a catalytic residue but positions the catalytic machinery already present in SRP-GTPases. We provide a general concept that might also apply to the RNA-driven activation of the universally conserved, co-translational protein-targeting machinery comprising the SRP-GTPases Ffh and FtsY. Our study exemplifies the evolutionary transition from RNA- to protein-driven activation in SRP-GTPases and suggests that the current view on SRP-mediated protein targeting is incomplete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SRP-GTPase FlhF is activated by the MinD homolog YlxH.
Figure 2: Structural basis for the activation of FlhF by YlxH.
Figure 3: Mechanism and molecular evolution of SRP-GTPase activation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Leipe, D.D., Wolf, Y.I., Koonin, E.V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Bange, G., Petzold, G., Wild, K., Parlitz, R.O. & Sinning, I. The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP. Proc. Natl. Acad. Sci. USA 104, 13621–13625 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grudnik, P., Bange, G. & Sinning, I. Protein targeting by the signal recognition particle. Biol. Chem. 390, 775–782 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Cross, B.C., Sinning, I., Luirink, J. & High, S. Delivering proteins for export from the cytosol. Nat. Rev. Mol. Cell Biol. 10, 255–264 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Egea, P.F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Focia, P.J., Shepotinovskaya, I.V., Seidler, J.A. & Freymann, D.M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, X., Schaffitzel, C., Ban, N. & Shan, S.O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl. Acad. Sci. USA 106, 1754–1759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wild, K., Halic, M., Sinning, I. & Beckmann, R. SRP meets the ribosome. Nat. Struct. Mol. Biol. 11, 1049–1053 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Powers, T. & Walter, P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422–1424 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Peluso, P., Shan, S.O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Siu, F.Y., Spanggord, R.J. & Doudna, J.A. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting. RNA 13, 240–250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradshaw, N., Neher, S.B., Booth, D.S. & Walter, P. Signal sequences activate the catalytic switch of SRP RNA. Science 323, 127–130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Leeuw, E. et al. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 19, 531–541 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stjepanovic, G. et al. Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting. J. Biol. Chem. 286, 23489–23497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ataide, S.F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kirkpatrick, C.L. & Viollier, P.H. Poles apart: prokaryotic polar organelles and their spatial regulation. Cold Spring Harb. Perspect. Biol. 3 (2011).

  20. Murray, T.S. & Kazmierczak, B.I. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 188, 6995–7004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carpenter, P.B., Hanlon, D.W. & Ordal, G.W. flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol. Microbiol. 6, 2705–2713 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Pandza, S. et al. The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol. Microbiol. 36, 414–423 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Correa, N.E., Peng, F. & Klose, K.E. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J. Bacteriol. 187, 6324–6332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kusumoto, A. et al. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J. Biochem. 139, 113–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Green, J.C. et al. Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. J. Mol. Biol. 391, 679–690 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Nowalk, A.J., Gilmore, R.D. Jr. & Carroll, J.A. Serologic proteome analysis of Borrelia burgdorferi membrane-associated proteins. Infect. Immun. 74, 3864–3873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kusumoto, A. et al. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 154, 1390–1399 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–R685 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M. & Wittinghofer, A. It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 10, 423–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Focia, P.J., Gawronski-Salerno, J., Coon, J.S.T. & Freymann, D.M. Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site. J. Mol. Biol. 360, 631–643 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fersht, A. Enzyme Structure and Mechanism (W.H. Freeman, San Francisco, 1977).

  33. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Daumke, O., Weyand, M., Chakrabarti, P.P., Vetter, I.R. & Wittinghofer, A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 429, 197–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Kimple, A.J., Bosch, D.E., Giguere, P.M. & Siderovski, D.P. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets. Pharmacol. Rev. 63, 728–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, R. & Ochman, H. Origins of flagellar gene operons and secondary flagellar systems. J. Bacteriol. 189, 7098–7104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. del Campo, A.M. et al. Chemotactic control of the two flagellar systems of Rhodobacter sphaeroides is mediated by different sets of CheY and FliM proteins. J. Bacteriol. 189, 8397–8401 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bohnsack, M.T. & Schleiff, E. The evolution of protein targeting and translocation systems. Biochim. Biophys. Acta 1803, 1115–1130 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Walter, P., Keenan, R. & Schmitz, U. Perspectives: structural biology. SRP–where the RNA and membrane worlds meet. Science 287, 1212–1213 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. James, P., Halladay, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Collaborative Computational Project. N.. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  44. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Bailey, T.L., Boden, M., Whitington, T. & Machanick, P. The value of position-specific priors in motif discovery using MEME. BMC Bioinformatics 11, 179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bailey, T.L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Council SFB638 (I.S.), the Graduiertenkolleg GRK1188 and the interdisciplinary PhD program “Molecular Machines: Mechanisms and Functional Interconnections” of the Land Baden-Württemberg (I.S.). I.S. and E.H. are investigators of the Cluster of Excellence:CellNetworks. We are grateful to A. Hendricks for her excellent technical assistance, U. Pachmayr for her contribution in the beginning of the project and R. Pipkorn (Deutsches Krebsforschungszentrum) for peptide synthesis. We thank J. Kopp and C. Siegmann from the BZH/Cluster of Excellence: CellNetworks crystallization platform for their support and E. Thomson for critical reading of the manuscript. Data collection was performed at ESRF beamline ID14-4 (European Synchrotron Radiation Facility).

Author information

Authors and Affiliations

Authors

Contributions

G.B. and I.S. designed the experiments, analyzed the data and wrote the manuscript. G.B. and N.K. performed the experiments. D.K. and E.H. provided the yeast-two hybrid analysis. P.G. and G.P. contributed to the activation assays. G.B., K.W. and I.S. performed crystallographic analysis. R.L. performed the computational analysis. All authors commented on the manuscript.

Corresponding authors

Correspondence to Gert Bange or Irmgard Sinning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 782 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bange, G., Kümmerer, N., Grudnik, P. et al. Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat Struct Mol Biol 18, 1376–1380 (2011). https://doi.org/10.1038/nsmb.2141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing