Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes

Abstract

In the nucleus of higher eukaryotes, maturation of mRNA precursors involves an orderly sequence of transcription-coupled interdependent steps. Transcription is well known to influence splicing, but how splicing may affect transcription remains unclear. Here we show that a splicing mutation that prevents recruitment of spliceosomal snRNPs to nascent transcripts causes co-transcriptional retention of unprocessed RNAs that remain associated with polymerases stalled predominantly at the 3′ end of the gene. In contrast, treatment with spliceostatin A, which allows early spliceosome formation but destabilizes subsequent assembly of the catalytic complex, abolishes 3′ end pausing of polymerases and induces leakage of unspliced transcripts to the nucleoplasm. Taken together, the data suggest that recruitment of splicing factors and correct assembly of the spliceosome are coupled to transcription termination, and this might ensure a proofreading mechanism that slows down release of unprocessed transcripts from the transcription site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging β-globin transcription sites in vivo.
Figure 2: Characterization of U2OS-βWT cells.
Figure 3: Imaging β-globin transcription dynamics.
Figure 4: Effect of intron 2 deletion on β-globin RNA splicing and polymerase dynamics.
Figure 5: Effect of SSA on β-globin RNA splicing and polymerase dynamics.
Figure 6: SSA reduces RNAPII density downstream of the poly(A) site in both β-globin and endogenous genes.
Figure 7: Coupling spliceosome assembly to leakage of unspliced transcripts to the nucleoplasm.
Figure 8: Schematic model illustrating the main conclusions from this study.

Similar content being viewed by others

References

  1. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).

    Article  CAS  Google Scholar 

  2. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  Google Scholar 

  3. Fuda, N.J., Ardehali, M.B. & Lis, J.T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    Article  CAS  Google Scholar 

  4. de Almeida, S.F. & Carmo-Fonseca, M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett. 582, 1971–1976 (2008).

    Article  CAS  Google Scholar 

  5. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  Google Scholar 

  6. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    Article  CAS  Google Scholar 

  7. Brinster, R.L., Allen, J.M., Behringer, R.R., Gelinas, R.E. & Palmiter, R.D. Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 836–840 (1988).

    Article  CAS  Google Scholar 

  8. Lu, S. & Cullen, B.R. Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. RNA 9, 618–630 (2003).

    Article  CAS  Google Scholar 

  9. Fong, Y.W. & Zhou, Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929–933 (2001).

    Article  CAS  Google Scholar 

  10. Kameoka, S., Duque, P. & Konarska, M.M. p54(nrb) associates with the 5′ splice site within large transcription/splicing complexes. EMBO J. 23, 1782–1791 (2004).

    Article  CAS  Google Scholar 

  11. Furger, A., O'Sullivan, J.M., Binnie, A., Lee, B.A. & Proudfoot, N.J. Promoter proximal splice sites enhance transcription. Genes Dev. 16, 2792–2799 (2002).

    Article  CAS  Google Scholar 

  12. Brès, V., Gomes, N., Pickle, L. & Jones, K.A. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 19, 1211–1226 (2005).

    Article  Google Scholar 

  13. Zorio, D.A. & Bentley, D.L. The link between mRNA processing and transcription: communication works both ways. Exp. Cell Res. 296, 91–97 (2004).

    Article  CAS  Google Scholar 

  14. Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S. & Fu, X.D. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15, 819–826 (2008).

    Article  CAS  Google Scholar 

  15. Lowary, P.T. & Uhlenbeck, O.C. An RNA mutation that increases the affinity of an RNA-protein interaction. Nucleic Acids Res. 15, 10483–10493 (1987).

    Article  CAS  Google Scholar 

  16. Boireau, S. et al. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol. 179, 291–304 (2007).

    Article  CAS  Google Scholar 

  17. Chapman, R.D., Conrad, M. & Eick, D. Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol. Cell. Biol. 25, 7665–7674 (2005).

    Article  CAS  Google Scholar 

  18. Bushnell, D.A., Cramer, P. & Kornberg, R.D. Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 Å resolution. Proc. Natl. Acad. Sci. USA 99, 1218–1222 (2002).

    Article  CAS  Google Scholar 

  19. Nguyen, V.T. et al. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res. 24, 2924–2929 (1996).

    Article  CAS  Google Scholar 

  20. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  Google Scholar 

  21. Yunger, S., Rosenfeld, L., Garini, Y. & Shav-Tal, Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nat. Methods 7, 631–633 (2010).

    Article  CAS  Google Scholar 

  22. Dye, M.J. & Proudfoot, N.J. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999).

    Article  CAS  Google Scholar 

  23. Dye, M.J. & Proudfoot, N.J. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 105, 669–681 (2001).

    Article  CAS  Google Scholar 

  24. Gromak, N., West, S. & Proudfoot, N.J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).

    Article  CAS  Google Scholar 

  25. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  Google Scholar 

  26. Berget, S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  Google Scholar 

  27. Custódio, N. et al. Inefficient processing impairs release of RNA from the site of transcription. EMBO J. 18, 2855–2866 (1999).

    Article  Google Scholar 

  28. de Almeida, S.F., Garcia-Sacristan, A., Custodio, N. & Carmo-Fonseca, M. A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res. 38, 8015–8026 (2010).

    Article  CAS  Google Scholar 

  29. Custódio, N. et al. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10, 622–633 (2004).

    Article  Google Scholar 

  30. Damgaard, C.K. et al. A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol. Cell 29, 271–278 (2008).

    Article  CAS  Google Scholar 

  31. West, S. & Proudfoot, N.J. Transcriptional termination enhances protein expression in human cells. Mol. Cell 33, 354–364 (2009).

    Article  CAS  Google Scholar 

  32. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3, 576–583 (2007).

    Article  CAS  Google Scholar 

  33. Roybal, G.A. & Jurica, M.S. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res. 38, 6664–6672 (2010).

    Article  CAS  Google Scholar 

  34. Corrionero, A., Minana, B. & Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    Article  CAS  Google Scholar 

  35. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    Article  CAS  Google Scholar 

  36. Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 15, 71–78 (2008).

    Article  CAS  Google Scholar 

  37. Wahl, M.C., Will, C.L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  Google Scholar 

  38. Janicki, S.M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  Google Scholar 

  39. Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K.M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).

    Article  CAS  Google Scholar 

  40. Alexander, R.D., Innocente, S.A., Barrass, J.D. & Beggs, J.D. Splicing-dependent RNA polymerase pausing in yeast. Mol. Cell 40, 582–593 (2010).

    Article  CAS  Google Scholar 

  41. Niwa, M., Rose, S.D. & Berget, S.M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4, 1552–1559 (1990).

    Article  CAS  Google Scholar 

  42. Niwa, M. & Berget, S.M. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 5, 2086–2095 (1991).

    Article  CAS  Google Scholar 

  43. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011).

    Article  CAS  Google Scholar 

  44. O'Keefe, R.T., Mayeda, A., Sadowski, C.L., Krainer, A.R. & Spector, D.L. Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J. Cell Biol. 124, 249–260 (1994).

    Article  CAS  Google Scholar 

  45. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    Article  CAS  Google Scholar 

  46. Barsoum, J. Introduction of stable high-copy-number DNA into Chinese hamster ovary cells by electroporation. DNA Cell Biol. 9, 293–300 (1990).

    Article  CAS  Google Scholar 

  47. Phair, R.D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  Google Scholar 

  48. Pacheco, T.R., Moita, L.F., Gomes, A.Q., Hacohen, N. & Carmo-Fonseca, M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol. Biol. Cell 17, 4187–4199 (2006).

    Article  CAS  Google Scholar 

  49. Nelson, J.D., Denisenko, O., Sova, P. & Bomsztyk, K. Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 34, e2 (2006).

    Article  Google Scholar 

  50. Blencowe, B.J., Issner, R., Nickerson, J.A. & Sharp, P.A. A coactivator of pre-mRNA splicing. Genes Dev. 12, 996–1009 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Singer from Albert Einstein College of Medicine, E. Bertrand from the Institute of Molecular Genetics of Montpellier (IGMM) and Y. Shav-Tal from Bar-Ilan University for insightful discussions and technical advice. We also thank E. Bertrand (IGMM), J. Lykke-Andersen (University of California, San Diego), N. Gehring (Heidelberg University), R. Chapman (Helmholtz Institute Munich), B. Blencowe (University of Toronto) and M. Antoniou (King's College London) for kindly providing reagents. This work was supported by Fundação para a Ciência e Tecnologia (PTDC/BIA-BCM/101575/2008 to M.C.-F., SFRH/BPD/42523/2007 to J.R. and SFRH/BPD/34679/2007 to S.F.d.A.) and the European Commission (EURASNET, LSHG-CT-2005-518238 to M.C.-F.).

Author information

Authors and Affiliations

Authors

Contributions

S.B.M. and J.R. designed and conducted the experiments and analyzed the data. J.R. was responsible for the microscopy. T.C. and C.C. generated and characterized the cell lines. J.M.K. carried out ChIP experiments and S.F.d.A. designed, conducted and analyzed biochemical experiments. M.Y. synthesized SSA. M.C.-F. conceived and supervised the project. S.B.M., J.R. and M.C.-F. wrote the paper.

Corresponding author

Correspondence to Maria Carmo-Fonseca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 1303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, S., Rino, J., Carvalho, T. et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nat Struct Mol Biol 18, 1115–1123 (2011). https://doi.org/10.1038/nsmb.2124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing