Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A split active site couples cap recognition by Dcp2 to activation

Abstract

Decapping by Dcp2 is an essential step in 5′-to-3′ mRNA decay. In yeast, decapping requires an open-to-closed transition in Dcp2, though the link between closure and catalysis remains elusive. Here we show using NMR that cap binds conserved residues on both the catalytic and regulatory domains of Dcp2. Lesions in the cap-binding site on the regulatory domain reduce the catalytic step by two orders of magnitude and block the formation of the closed state, whereas Dcp1 enhances the catalytic step by a factor of 10 and promotes closure. We conclude that closure occurs during the rate-limiting catalytic step of decapping, juxtaposing the cap-binding region of each domain to form a composite active site. This work suggests a model for regulation of decapping where coactivators trigger decapping by stabilizing a labile composite active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutants along the interdomain interface in the closed crystal form attenuate the catalytic step of decapping.
Figure 2: Some interface mutants block conversion to the closed form measured by SAXS.
Figure 3: The regulatory domain has a specific binding site for m7G.
Figure 4: The catalytic domain binds m7GDP on the catalytic helix and binds a variety of nucleotides along the RNA binding region.
Figure 5: Decapping by Dcp2 proceeds by the formation of a composite active site involving both the regulatory and catalytic domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schier, A.F. The maternal-zygotic transition: death and birth of RNAs. Science 316, 406–407 (2007).

    Article  CAS  Google Scholar 

  2. Lindstein, T., June, C.H., Ledbetter, J.A., Stella, G. & Thompson, C.B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

    Article  CAS  Google Scholar 

  3. Shyu, A.B., Greenberg, M.E. & Belasco, J.G. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 3, 60–72 (1989).

    Article  CAS  Google Scholar 

  4. Shaw, G. & Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659–667 (1986).

    Article  CAS  Google Scholar 

  5. Hilgers, V., Teixeira, D. & Parker, R. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae . RNA 12, 1835–1845 (2006).

    Article  CAS  Google Scholar 

  6. Chowdhury, D. & Novina, C.D. RNAi and RNA-based regulation of immune system function. Adv. Immunol. 88, 267–292 (2005).

    Article  CAS  Google Scholar 

  7. Isken, O. & Maquat, L.E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  Google Scholar 

  8. Wang, Z., Jiao, X., Carr-Schmid, A. & Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. USA 99, 12663–12668 (2002).

    Article  CAS  Google Scholar 

  9. Beelman, C.A. et al. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642–646 (1996).

    Article  CAS  Google Scholar 

  10. Fenger-Grøn, M., Fillman, C., Norrild, B. & Lykke-Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905–915 (2005).

    Article  Google Scholar 

  11. Chen, C.Y. & Shyu, A.B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).

    Article  CAS  Google Scholar 

  12. Amrani, N., Sachs, M.S. & Jacobson, A. Early nonsense: mRNA decay solves a translational problem. Nat. Rev. Mol. Cell Biol. 7, 415–425 (2006).

    Article  CAS  Google Scholar 

  13. Chen, C.Y., Zheng, D., Xia, Z. & Shyu, A. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat. Struct. Mol. Biol. 16, 1160–1166 (2009).

    Article  CAS  Google Scholar 

  14. Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558–2570 (2007).

    Article  CAS  Google Scholar 

  15. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  Google Scholar 

  16. Rissland, O.S. & Norbury, C. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat. Struct. Mol. Biol. 16, 616–623 (2009).

    Article  CAS  Google Scholar 

  17. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  Google Scholar 

  18. Song, M.-G. & Kiledjian, M. 3′ terminal oligo U-tract-mediated stimulation of decapping. RNA 13, 2356–2365 (2007).

    Article  CAS  Google Scholar 

  19. Shen, B. & Goodman, H.M. Uridine addition after microRNA-directed cleavage. Science 306, 997 (2004).

    Article  CAS  Google Scholar 

  20. Stevens, A. & Maupin, M.K. A 5′—3′ exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252, 339–347 (1987).

    Article  CAS  Google Scholar 

  21. Coller, J. & Parker, R. Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890 (2004).

    Article  CAS  Google Scholar 

  22. Franks, T.M. & Lykke-Andersen, J. The control of mRNA decapping and p-body formation. Mol. Cell 32, 605–615 (2008).

    Article  CAS  Google Scholar 

  23. Garneau, N.L., Wilusz, J. & Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).

    Article  CAS  Google Scholar 

  24. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae . Nature 440, 637–643 (2006).

    Article  CAS  Google Scholar 

  25. Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007).

    Article  CAS  Google Scholar 

  26. She, M. et al. Structural basis of dcp2 recognition and activation by dcp1. Mol. Cell 29, 337–349 (2008).

    Article  CAS  Google Scholar 

  27. Deshmukh, M.V. et al. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol. Cell 29, 324–336 (2008).

    Article  CAS  Google Scholar 

  28. She, M. et al. Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe . Nat. Struct. Mol. Biol. 13, 63–70 (2006).

    Article  CAS  Google Scholar 

  29. Mildvan, A.S. et al. Structures and mechanisms of Nudix hydrolases. Arch. Biochem. Biophys. 433, 129–143 (2005).

    Article  CAS  Google Scholar 

  30. Bessman, M.J., Frick, D.N. & O'Handley, S.F. The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J. Biol. Chem. 271, 25059–25062 (1996).

    Article  CAS  Google Scholar 

  31. Piccirillo, C., Khanna, R. & Kiledjian, M. Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9, 1138–1147 (2003).

    Article  CAS  Google Scholar 

  32. Teixeira, D. & Parker, R. Analysis of P-body assembly in Saccharomyces cerevisiae . Mol. Biol. Cell 18, 2274–2287 (2007).

    Article  CAS  Google Scholar 

  33. Sheth, U. & Parker, R. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125, 1095–1109 (2006).

    Article  CAS  Google Scholar 

  34. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    Article  CAS  Google Scholar 

  35. Jones, B.N., Quang-Dang, D.-U., Oku, Y. & Gross, J.D. A kinetic assay to monitor RNA decapping under single-turnover conditions. Methods Enzymol. 448, 23–40 (2008).

    Article  CAS  Google Scholar 

  36. Gabelli, S.B., Bianchet, M.A., Bessman, M.J. & Amzel, L.M. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat. Struct. Biol. 8, 467–472 (2001).

    Article  CAS  Google Scholar 

  37. Kalodimos, C.G. et al. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 305, 386–389 (2004).

    Article  CAS  Google Scholar 

  38. von Hippel, P.H. & Berg, O.G. Facilitated target location in biological systems. J. Biol. Chem. 264, 675–678 (1989).

    CAS  PubMed  Google Scholar 

  39. Floor, S., Jones, B. & Gross, J. Control of mRNA decapping by Dcp2: an open and shut case? RNA Biol. 5, 189–192 (2008).

    Article  CAS  Google Scholar 

  40. Dunckley, T., Tucker, M. & Parker, R. Two related proteins, Edc1p and Edc2p, stimulate mRNA decapping in Saccharomyces cerevisiae . Genetics 157, 27–37 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Decker, C.J., Teixeira, D. & Parker, R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae . J. Cell Biol. 179, 437–449 (2007).

    Article  CAS  Google Scholar 

  42. Schutz, P. et al. Crystal structure of the yeast eIF4A-eIF4G complex: An RNA-helicase controlled by protein-protein interactions. Proc. Natl. Acad. Sci. USA 105, 9564–9569 (2008).

    Article  CAS  Google Scholar 

  43. Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    Article  CAS  Google Scholar 

  44. Gu, M. et al. Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol. Cell 14, 67–80 (2004).

    Article  CAS  Google Scholar 

  45. Wang, Z. & Kiledjian, M. Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751–762 (2001).

    Article  CAS  Google Scholar 

  46. Mori, S., Abeygunawardana, C., Johnson, M.O. & van Zijl, P.C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B. 108, 94–98 (1995).

    Article  CAS  Google Scholar 

  47. Card, P.B. & Gardner, K.H. Identification and optimization of protein domains for NMR studies. Methods Enzymol. 394, 3–16 (2005).

    Article  CAS  Google Scholar 

  48. Ferentz, A.E. & Wagner, G. NMR spectroscopy: a multifaceted approach to macromolecular structure. Q. Rev. Biophys. 33, 29–65 (2000).

    Article  CAS  Google Scholar 

  49. Hura, G.L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606 (2009).

    Article  CAS  Google Scholar 

  50. Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  51. Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  Google Scholar 

  52. Glatter, O. & Kratky, O. Small Angle X-ray Scattering (Academic Press, London, 1982).

  53. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  54. Collaborative Computational Project. N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  55. Chothia, C. The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105, 1–12 (1976).

    Article  CAS  Google Scholar 

  56. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  57. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kelly for NMR support; K. Krukenberg as well as beamline scientists G. Hura and M. Hammel of Beamline 12.3.1 at the Advanced Light Source for assistance with SAXS experimentation and data analysis; and J.J. Miranda, M. Pufall, G. Narlikar and D. Morgan for critical reading of the manuscript. This work was supported by US National Institutes of Health grant R01GM078360 to J.D.G. S.N.F. received support from the Sandler Family Foundation for Basic Sciences and the Achievement Awards for College Scientists Foundation. B.N.J. was supported by a National Science Foundation predoctoral fellowship. G.A.H. was a student in the University of California, San Francisco Summer Research Training Program. The Advanced Light Source is supported by US Department of Energy Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

S.N.F. designed and performed experiments, analyzed data, wrote the manuscript and prepared the figures; B.N.J. performed an experiment; G.A.H. generated Dcp2 mutants; J.D.G. supervised the project and experimental design and guided manuscript preparation.

Corresponding author

Correspondence to John D Gross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Note (PDF 1445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floor, S., Jones, B., Hernandez, G. et al. A split active site couples cap recognition by Dcp2 to activation. Nat Struct Mol Biol 17, 1096–1101 (2010). https://doi.org/10.1038/nsmb.1879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing