Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein

Abstract

The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rb880–892 is necessary and sufficient for PP1c association.
Figure 2: Structure of the Rb870–882–PP1c complex.
Figure 3: The RbC KLRF docking sequence is required for efficient dephosphorylation by PP1c.
Figure 4: PP1c inhibits Cdk2-CycA activity toward RbC.
Figure 5: PP1c inhibits Cdk inactivation of Rb independently of phosphatase activity.
Figure 6: Abundant Rb–PP1c complexes during PP1c-dependent growth arrest.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  2. Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  3. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  Google Scholar 

  4. Kennedy, B.K. et al. Histone deacetylase-dependent transcriptional repression by pRB in yeast occurs independently of interaction through the LXCXE binding cleft. Proc. Natl. Acad. Sci. USA 98, 8720–8725 (2001).

    Article  CAS  Google Scholar 

  5. Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  Google Scholar 

  6. Zhang, H.S. et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79–89 (2000).

    Article  CAS  Google Scholar 

  7. Adams, P.D. Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim. Biophys. Acta 1471, M123–M133 (2001).

    CAS  PubMed  Google Scholar 

  8. Harbour, J.W., Luo, R.X., Dei Santi, A., Postigo, A.A. & Dean, D.C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999).

    Article  CAS  Google Scholar 

  9. Wu, J.Q. et al. PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat. Cell Biol. 11, 644–651 (2009).

    Article  CAS  Google Scholar 

  10. Ludlow, J.W., Glendening, C.L., Livingston, D.M. & DeCarprio, J.A. Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol. Cell. Biol. 13, 367–372 (1993).

    Article  CAS  Google Scholar 

  11. Ludlow, J.W., Shon, J., Pipas, J.M., Livingston, D.M. & DeCaprio, J.A. The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell 60, 387–396 (1990).

    Article  CAS  Google Scholar 

  12. Krucher, N.A. et al. Dephosphorylation of Rb (Thr-821) in response to cell stress. Exp. Cell Res. 312, 2757–2763 (2006).

    Article  CAS  Google Scholar 

  13. Dou, Q.P., An, B. & Will, P.L. Induction of a retinoblastoma phosphatase activity by anticancer drugs accompanies p53-independent G1 arrest and apoptosis. Proc. Natl. Acad. Sci. USA 92, 9019–9023 (1995).

    Article  CAS  Google Scholar 

  14. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nat. Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  15. Sherr, C.J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  16. Morgan, D.O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  CAS  Google Scholar 

  17. Broceno, C., Wilkie, S. & Mittnacht, S. RB activation defect in tumor cell lines. Proc. Natl. Acad. Sci. USA 99, 14200–14205 (2002).

    Article  CAS  Google Scholar 

  18. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569 (1993).

    Article  CAS  Google Scholar 

  19. Cohen, P.T. Protein phosphatase 1–targeted in many directions. J. Cell Sci. 115, 241–256 (2002).

    CAS  PubMed  Google Scholar 

  20. Terrak, M., Kerff, F., Langsetmo, K., Tao, T. & Dominguez, R. Structural basis of protein phosphatase 1 regulation. Nature 429, 780–784 (2004).

    Article  CAS  Google Scholar 

  21. Egloff, M.P. et al. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16, 1876–1887 (1997).

    Article  CAS  Google Scholar 

  22. Kiss, A. et al. Myosin phosphatase interacts with and dephosphorylates the retinoblastoma protein in THP-1 leukemic cells: its inhibition is involved in the attenuation of daunorubicin-induced cell death by calyculin-A. Cell. Signal. 20, 2059–2070 (2008).

    Article  CAS  Google Scholar 

  23. Nelson, D.A., Krucher, N.A. & Ludlow, J.W. High molecular weight protein phosphatase type 1 dephosphorylates the retinoblastoma protein. J. Biol. Chem. 272, 4528–4535 (1997).

    Article  CAS  Google Scholar 

  24. Tamrakar, S. & Ludlow, J.W. The carboxyl-terminal region of the retinoblastoma protein binds non-competitively to protein phosphatase type 1α and inhibits catalytic activity. J. Biol. Chem. 275, 27784–27789 (2000).

    CAS  PubMed  Google Scholar 

  25. Vietri, M., Bianchi, M., Ludlow, J.W., Mittnacht, S. & Villa-Moruzzi, E. Direct interaction between the catalytic subunit of protein phosphatase 1 and pRb. Cancer Cell Int. 6, 3 (2006).

    Article  Google Scholar 

  26. Rubin, S.M., Gall, A.L., Zheng, N. & Pavletich, N.P. Structure of the Rb C-terminal domain bound to E2F1–DP1: a mechanism for phosphorylation-induced E2F release. Cell 123, 1093–1106 (2005).

    Article  CAS  Google Scholar 

  27. Adams, P.D. et al. Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol. Cell. Biol. 19, 1068–1080 (1999).

    Article  CAS  Google Scholar 

  28. Ji, P. et al. An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol. Cell 16, 47–58 (2004).

    Article  CAS  Google Scholar 

  29. Welch, P.J. & Wang, J.Y. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75, 779–790 (1993).

    Article  CAS  Google Scholar 

  30. Xiao, Z.X. et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375, 694–698 (1995).

    Article  CAS  Google Scholar 

  31. Lowe, E.D. et al. Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41, 15625–15634 (2002).

    Article  CAS  Google Scholar 

  32. Schulman, B.A., Lindstrom, D.L. & Harlow, E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl. Acad. Sci. USA 95, 10453–10458 (1998).

    Article  CAS  Google Scholar 

  33. Egloff, M.P., Cohen, P.T., Reinemer, P. & Barford, D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J. Mol. Biol. 254, 942–959 (1995).

    Article  CAS  Google Scholar 

  34. Goldberg, J. et al. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376, 745–753 (1995).

    Article  CAS  Google Scholar 

  35. Tamrakar, S., Mittnacht, S. & Ludlow, J.W. Binding of select forms of pRB to protein phosphatase type 1 independent of catalytic activity. Oncogene 18, 7803–7809 (1999).

    Article  CAS  Google Scholar 

  36. Meiselbach, H., Sticht, H. & Enz, R. Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins. Chem. Biol. 13, 49–59 (2006).

    Article  CAS  Google Scholar 

  37. Huang, H.J. et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242, 1563–1566 (1988).

    Article  CAS  Google Scholar 

  38. Hinds, P.W. et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006 (1992).

    Article  CAS  Google Scholar 

  39. Zhu, L. et al. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7, 1111–1125 (1993).

    Article  CAS  Google Scholar 

  40. Margolis, S.S. et al. PP1 control of M phase entry exerted through 14–3-3-regulated Cdc25 dephosphorylation. EMBO J. 22, 5734–5745 (2003).

    Article  CAS  Google Scholar 

  41. Ferrell, J.E. Jr. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem. Sci. 21, 460–466 (1996).

    Article  CAS  Google Scholar 

  42. Goldbeter, A. & Koshland, D.E. Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 6840–6844 (1981).

    Article  CAS  Google Scholar 

  43. Salazar, C. & Hofer, T. Competition effects shape the response sensitivity and kinetics of phosphorylation cycles in cell signaling. Ann. NY Acad. Sci. 1091, 517–530 (2006).

    Article  Google Scholar 

  44. Thomson, M. & Gunawardena, J. Unlimited multistability in multisite phosphorylation systems. Nature 460, 274–277 (2009).

    Article  CAS  Google Scholar 

  45. Tanoue, T., Adachi, M., Moriguchi, T. & Nishida, E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2, 110–116 (2000).

    Article  CAS  Google Scholar 

  46. Zhang, Z., Zhao, S., Zirattu, S.D., Bai, G. & Lee, E.Y. Expression of recombinant inhibitor-2 in E. coli and its utilization for the affinity chromatography of protein phosphatase-1. Arch. Biochem. Biophys. 308, 37–41 (1994).

    Article  CAS  Google Scholar 

  47. Russo, A.A. Purification and reconstitution of cyclin-dependent kinase 2 in four states of activity. Methods Enzymol. 283, 3–12 (1997).

    Article  CAS  Google Scholar 

  48. Burke, J.R., Deshong, A.J., Pelton, J.G. & Rubin, S.M. Phosphorylation-induced conformational changes in the retinoblastoma protein inhibit E2F transactivation domain binding. J. Biol. Chem. 285, 16286–16293 (2010).

    Article  CAS  Google Scholar 

  49. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    Article  CAS  Google Scholar 

  50. Seifried, L.A. et al. pRB-E2F1 complexes are resistant to adenovirus E1A-mediated disruption. J. Virol. 82, 4511–4520 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the staff at Beamline 5.0.1 of the Advanced Light Source (Lawrence Berkeley National Laboratories) and are grateful to N. Dyson (Massachusetts General Hospital) for CMV-CycA and T. Pawson (MSHRI, Toronto) for the CMV-myc-PP1c plasmid. The Rb 4.1 hybridoma developed by J. Sage was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the US National Institute of Child Health and Human Development and maintained by The University of Iowa, Department of Biology. This work is supported by grants from the Canadian Institutes of Health Research (MOP89765 to F.A.D.) and the US National Institutes of Health (R01CA132685 to S.M.R.). A.H. is supported by a US National Institutes of Health training grant (T32GM008646). M.C. acknowledges the Canadian Institutes of Health Research for an M.D./Ph.D. studentship award and the CaRTT training program. A.H. and S.M.R. thank the Santa Cruz Cancer Benefit Group for their support. F.A.D. thanks the Canadian Cancer Society for a Research Scientist Award. S.M.R. is a Pew Scholar in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

A.H., M.C., F.A.D. and S.M.R. all designed aspects of the study; A.H., M.C., R.C.S., M.R.S. and S.M.R. performed experiments; all authors analyzed data; F.A.D. and S.M.R. wrote the manuscript.

Corresponding author

Correspondence to Seth M Rubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 6834 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschi, A., Cecchini, M., Steinhardt, R. et al. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol 17, 1051–1057 (2010). https://doi.org/10.1038/nsmb.1868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing