Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein refolding is required for assembly of the type three secretion needle

Abstract

Pathogenic Gram-negative bacteria use a type three secretion system (TTSS) to deliver virulence factors into host cells. Although the order in which proteins incorporate into the growing TTSS is well described, the underlying assembly mechanisms are still unclear. Here we show that the TTSS needle protomer refolds spontaneously to extend the needle from the distal end. We developed a functional mutant of the needle protomer from Shigella flexneri and Salmonella typhimurium to study its assembly in vitro. We show that the protomer partially refolds from α-helix into β-strand conformation to form the TTSS needle. Reconstitution experiments show that needle growth does not require ATP. Thus, like the structurally related flagellar systems, the needle elongates by subunit polymerization at the distal end but requires protomer refolding. Our studies provide a starting point to understand the molecular assembly mechanisms and the structure of the TTSS at atomic level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymerization of a functional TTSS protomer.
Figure 2: In vitro assembly of TTSS needles.
Figure 3: Protomer refolding during assembly of the TTSS needle.
Figure 4: Assembly of the TTSS needle.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    Article  CAS  Google Scholar 

  2. Journet, L., Agrain, C., Broz, P. & Cornelis, G.R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302, 1757–1760 (2003).

    Article  CAS  Google Scholar 

  3. Tamano, K. et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887 (2000).

    Article  CAS  Google Scholar 

  4. Cornelis, G.R. The type III secretion injectisome. Nat. Rev. Microbiol. 4, 811–825 (2006).

    Article  CAS  Google Scholar 

  5. Galan, J.E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  CAS  Google Scholar 

  6. Nhieu, G.T. & Sansonetti, P.J. Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2, 51–55 (1999).

    Article  CAS  Google Scholar 

  7. Kimbrough, T.G. & Miller, S.I. Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes Infect. 4, 75–82 (2002).

    Article  CAS  Google Scholar 

  8. Marlovits, T.C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004).

    Article  CAS  Google Scholar 

  9. Blocker, A. et al. Structure and composition of the Shigella flexneri 'needle complex', a part of its type III secreton. Mol. Microbiol. 39, 652–663 (2001).

    Article  CAS  Google Scholar 

  10. Blocker, A.J. et al. What's the point of the type III secretion system needle? Proc. Natl. Acad. Sci. USA 105, 6507–6513 (2008).

    Article  CAS  Google Scholar 

  11. Kawagishi, I., Homma, M., Williams, A.W. & Macnab, R.M. Characterization of the flagellar hook length control protein fliK of Salmonella typhimurium and Escherichichia coli. J. Bacteriol. 178, 2954–2959 (1996).

    Article  CAS  Google Scholar 

  12. Espina, M. et al. IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect. Immun. 74, 4391–4400 (2006).

    Article  CAS  Google Scholar 

  13. Mota, L.J. Type III secretion gets an LcrV tip. Trends Microbiol. 14, 197–200 (2006).

    Article  CAS  Google Scholar 

  14. Mueller, C.A. et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310, 674–676 (2005).

    Article  CAS  Google Scholar 

  15. Sani, M. et al. IpaD is localized at the tip of the Shigella flexneri type III secretion apparatus. Biochim. Biophys. Acta 1770, 307–311 (2007).

    Article  CAS  Google Scholar 

  16. Rogers, D.R. Screening for amyoloid with the thioflavin-T fluorescent method. Am. J. Clin. Pathol. 44, 59–61 (1965).

    Article  CAS  Google Scholar 

  17. Blake, C.C.F. et al. Nature and Origin of Amyloid Fibrils. CIBA Foundation Symposium, No. 199 (1996).

    Google Scholar 

  18. Cordes, F.S. et al. Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 17103–17107 (2003).

    Article  CAS  Google Scholar 

  19. Quinaud, M. et al. The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J. Biol. Chem. 280, 36293–36300 (2005).

    Article  CAS  Google Scholar 

  20. Marlovits, T.C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637–640 (2006).

    Article  CAS  Google Scholar 

  21. Bishop, M.F. & Ferrone, F.A. Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway. Biophys. J. 46, 631–644 (1984).

    Article  CAS  Google Scholar 

  22. Emerson, S.U., Tokuyasu, K. & Simon, M.I. Bacterial flagella: polarity of elongation. Science 169, 190–192 (1970).

    Article  CAS  Google Scholar 

  23. Wang, Y. et al. Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH. J. Mol. Biol. 371, 1304–1314 (2007).

    Article  CAS  Google Scholar 

  24. Akeda, Y. & Galan, J.E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005).

    Article  CAS  Google Scholar 

  25. Darboe, N., Kenjale, R., Picking, W.L., Picking, W.D. & Middaugh, C.R. Chemical denaturation of MxiH from Shigella and PrgI from Salmonella. Protein Sci. 15, 543–552 (2006).

    Article  CAS  Google Scholar 

  26. Deane, J.E. et al. Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 62, 302–305 (2006).

    Article  CAS  Google Scholar 

  27. Zhang, L., Wang, Y., Picking, W.L., Picking, W.D. & De Guzman, R.N. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei. J. Mol. Biol. 359, 322–330 (2006).

    Article  CAS  Google Scholar 

  28. Barrett, B.S., Picking, W.L., Picking, W.D. & Middaugh, C.R. The response of type three secretion system needle proteins MxiHDelta5, BsaLDelta5, and PrgIDelta5 to temperature and pH. Proteins 73, 632–643 (2008).

    Article  CAS  Google Scholar 

  29. Deane, J.E. et al. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc. Natl. Acad. Sci. USA 103, 12529–12533 (2006).

    Article  CAS  Google Scholar 

  30. Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280, 42929–42937 (2005).

    Article  CAS  Google Scholar 

  31. Oberg, K.A., Ruysschaert, J.M. & Goormaghtigh, E. Rationally selected basis proteins: a new approach to selecting proteins for spectroscopic secondary structure analysis. Protein Sci. 12, 2015–2031 (2003).

    Article  CAS  Google Scholar 

  32. Quinaud, M. et al. Structure of the heterotrimeric complex that regulates type III secretion needle formation. Proc. Natl. Acad. Sci. USA 104, 7803–7808 (2007).

    Article  CAS  Google Scholar 

  33. Sun, P., Tropea, J.E., Austin, B.P., Cherry, S. & Waugh, D.S. Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J. Mol. Biol. 377, 819–830 (2008).

    Article  CAS  Google Scholar 

  34. Tan, Y.W., Yu, H.B., Leung, K.Y., Sivaraman, J. & Mok, Y.K. Structure of AscE and induced burial regions in AscE and AscG upon formation of the chaperone needle-subunit complex of type III secretion system in Aeromonas hydrophila. Protein Sci. 17, 1748–1760 (2008).

    Article  CAS  Google Scholar 

  35. Minamino, T. & Namba, K. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451, 485–488 (2008).

    Article  CAS  Google Scholar 

  36. Paul, K., Erhardt, M., Hirano, T., Blair, D.F. & Hughes, K.T. Energy source of flagellar type III secretion. Nature 451, 489–492 (2008).

    Article  CAS  Google Scholar 

  37. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  38. Padilla, J.E. & Yeates, T.O. A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr. D Biol. Crystallogr. 59, 1124–1130 (2003).

    Article  Google Scholar 

  39. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  40. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK—a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  43. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  44. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    Article  CAS  Google Scholar 

  45. Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  46. Keller, R. The Computer Aided Resonance Assignment Tutorial 1st edn. (CANTINA Verlag, Goldau, Switzerland, 2004).

  47. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    Article  CAS  Google Scholar 

  48. Grzesiek, S. & Bax, A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J. Biomol. NMR 3, 185–204 (1993).

    CAS  PubMed  Google Scholar 

  49. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

  50. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the α- and β-carbon resonances in proteins. J. Magn. Reson. B 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  51. Bax, A. & Ikura, M. An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the α-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J. Biomol. NMR 1, 99–104 (1991).

    Article  CAS  Google Scholar 

  52. Grzesiek, S. et al. Proton, carbon-13, and nitrogen-15 NMR backbone assignments and secondary structure of human interferon-γ. Biochemistry 31, 8180–8190 (1992).

    Article  CAS  Google Scholar 

  53. Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667 (1990).

    Article  CAS  Google Scholar 

  54. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H correlation via isotropic mixing of carbon-13 magnetization, a new three-dimensional approach for assigning proton and carbon-13 spectra of carbon-13-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  55. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  56. Lee, D., Vogeli, B. & Pervushin, K. Detection of C′,Cα correlations in proteins using a new time- and sensitivity-optimal experiment. J. Biomol. NMR 31, 273–278 (2005).

    Article  CAS  Google Scholar 

  57. Baldus, M. Molecular Interactions investigated by multi-dimensional solid-state NMR. Curr. Opin. Struct. Biol. 16, 618–623 (2006).

    Article  CAS  Google Scholar 

  58. Seidel, K. et al. Protein solid-state NMR resonance assignments from (13C,13C) correlation spectroscopy. Phys. Chem. Chem. Phys. 6, 5090–5093 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Jungblut and M. Schmid for help with MS analysis, V. Brinkmann and U. Abu Abed for help with electron microscopy sample preparation, U. Müller and S. Monaco for assistance in using beamlines, M. Luft for providing the opportunity of the FTIR measurements and for helpful discussions, B. Angerstein for help with ssNMR sample preparation, D. Lee for help in using Bruker spectrometers and B. Raupach, A. Zumsteg, F. Meissner, M. Lunelli and R. Kumar Lokareddy for their useful comments and critical reading of the manuscript. This work was supported by the Max-Planck-Society (to C. Griesinger and A.Z.) and by the Deutsche Forschungsgemeinschaft through an Emmy Noether stipend (LA 2705/1-1) to A.L.

Author information

Authors and Affiliations

Authors

Contributions

Ö.P. cloned constructs and purified protomer for every experiment, crystallized, collected, processed and refined X-ray diffraction data and performed cellular assays; H.S. collected, processed and analyzed liquid-state NMR data and performed FTIR experiments and ThioflavinT binding assays; F.D. performed and analyzed DLS and X-ray fiber diffraction experiments; K.S. and C.A. collected, processed and analyzed solid-state NMR data; H.T. and Ö.P. purified and performed in vitro growth experiments with TTSS; C. Goosmann performed TEM studies; A.L. and M.B. designed and analyzed solid-state NMR experiments; C. Griesinger designed and analyzed liquid-state NMR experiments; A.T. designed and analyzed DLS and X-ray fiber diffraction experiments; V.B. designed TEM experiments; A.Z. designed functional and structural experiments; M.K. conceived this study, designed functional and TEM experiments, collected, refined and analyzed X-ray diffraction data and wrote the paper; all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Adam Lange or Michael Kolbe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Table 1 and Supplementary Methods (PDF 4245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poyraz, Ö., Schmidt, H., Seidel, K. et al. Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 17, 788–792 (2010). https://doi.org/10.1038/nsmb.1822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1822

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology