Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3

Abstract

Ever shorter telomeres 3 (Est3) is an essential telomerase regulatory subunit thought to be unique to budding yeasts. Here we use multiple sequence alignment and hidden Markov model–hidden Markov model (HMM-HMM) comparison to uncover potential similarities between Est3 and the mammalian telomeric protein Tpp1. Analysis of site-specific mutants of Candida albicans Est3 revealed functional distinctions between residues that are conserved between Est3 and Tpp1 and those that are unique to Est3. Although both types of residues are important for telomere maintenance in vivo, only the former contributes to telomerase activity in vitro and facilitates the association of Est3 with telomerase core components. Consistent with a function in protein-protein interaction, the residues common to Est3 and Tpp1 map to one face of an OB-fold model structure, away from the canonical nucleic acid binding surface. We propose that Est3 and the OB-fold domain of Tpp1 mediate a conserved function in telomerase regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and structural similarity between Est3 and Tpp1 homologs.
Figure 2: The effects of C. albicans Est3 mutations on telomere maintenance and telomerase association.
Figure 3: The effects of C. albicans Est3 mutations on telomerase primer extension activity in vitro.

Similar content being viewed by others

References

  1. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Ferreira, M.G., Miller, K.M. & Cooper, J.P. Indecent exposure: when telomeres become uncapped. Mol. Cell 13, 7–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Cech, T.R. Beginning to understand the end of the chromosome. Cell 116, 273–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Autexier, C. & Lue, N.F. The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75, 493–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Collins, K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 7, 484–494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blackburn, E.H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 579, 859–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. de Lange, T. Mammalian telomeres. in Telomeres and Telomerase (eds. de Lange, T., Lundblad, V. & Blackburn, E.) 387–431 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006).

    Google Scholar 

  9. Gao, H., Cervantes, R.B., Mandell, E.K., Otero, J.H. & Lundblad, V. RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14, 208–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Bertuch, A.A. & Lundblad, V. The maintenance and masking of chromosome termini. Curr. Opin. Cell Biol. 18, 247–253 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Lundblad, V. Budding yeast telomeres. in Telomeres and Telomerase (eds. de Lange, T., Lundblad, V. & Blackburn, E.) 345–386 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006).

    Google Scholar 

  12. Hughes, T.R., Evans, S.K., Weilbaecher, R.G. & Lundblad, V. The Est3 protein is a subunit of yeast telomerase. Curr. Biol. 10, 809–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Steinberg-Neifach, O. & Lue, N.F. Modulation of telomere terminal structure by telomerase components in Candida albicans. Nucleic Acids Res. 34, 2710–2722 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lingner, J., Cech, T.R., Hughes, T.R. & Lundblad, V. Three Ever shorter telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94, 11190–11195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh, S.M., Steinberg-Neifach, O., Mian, I.S. & Lue, N.F. Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot. Cell 1, 967–977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu, M., Yu, E.Y., Singh, S.M. & Lue, N.F. Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. Eukaryot. Cell 6, 1330–1338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Friedman, K.L., Heit, J.J., Long, D.M. & Cech, T.R. N-terminal domain of yeast telomerase reverse transcriptase: recruitment of Est3p to the telomerase complex. Mol. Biol. Cell 14, 1–13 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Osterhage, J.L., Talley, J.M. & Friedman, K.L. Proteasome-dependent degradation of Est1p regulates the cell cycle-restricted assembly of telomerase in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 13, 720–728 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Paeschke, K. et al. Telomerase recruitment by the telomere end binding protein-β facilitates G-quadruplex DNA unfolding in ciliates. Nat. Struct. Mol. Biol. 15, 598–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Miyoshi, T., Kanoh, J., Saito, M. & Ishikawa, F. Fission yeast Pot1–Tpp1 protects telomeres and regulates telomere length. Science 320, 1341–1344 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Surovtseva, Y.V. et al. Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. EMBO J. 26, 3653–3661 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson, R.B., Davis, D. & Mitchell, A.P. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181, 1868–1874 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Do, C.B., Mahabhashyam, M.S., Brudno, M. & Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 15, 330–340 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Den and J. Kang for technical assistance. This work was supported by grants from the US National Institutes of Health (GM069507 to N.F.L. and GM083015 to M.L.).

Author information

Authors and Affiliations

Authors

Contributions

E.Y.Y. performed the experiments and analyzed the data. F.W. and M.L. contributed reagents and helped interpret the data. N.F.L. conceived the project, analyzed the experiments and wrote the paper.

Corresponding author

Correspondence to Neal F Lue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young Yu, E., Wang, F., Lei, M. et al. A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nat Struct Mol Biol 15, 985–989 (2008). https://doi.org/10.1038/nsmb.1471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing