Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SRP RNA controls a conformational switch regulating the SRP–SRP receptor interaction

Abstract

The interaction of the signal-recognition particle (SRP) with its receptor (SR) mediates co-translational protein targeting to the membrane. SRP and SR interact via their homologous core GTPase domains and N-terminal four-helix bundles (N domains). SRP–SR complex formation is slow unless catalyzed by SRP's essential RNA component. We show that truncation of the first helix of the N domain (helix N1) of both proteins dramatically accelerates their interaction. SRP and SR with helix N1 truncations interact at nearly the RNA-catalyzed rate in the absence of RNA. NMR spectroscopy and analysis of GTPase activity show that helix N1 truncation in SR mimics the conformational switch caused by complex formation. These results demonstrate that the N-terminal helices of SRP and SR are autoinhibitory for complex formation in the absence of SRP RNA, suggesting a mechanism for RNA-mediated coordination of the SRP–SR interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and schematic representations of the FtsY and Ffh constructs used in this study.
Figure 2: The N-terminal helices of Ffh and FtsY inhibit Ffh–FtsY association in the absence of 4.5S RNA.
Figure 3: The N-terminal helices of Ffh and FtsY stimulate Ffh–FtsY complex dissociation in the presence of 4.5S RNA.
Figure 4: The N-terminal helix of FtsY represses its basal GTPase activity.
Figure 5: FtsYΔN1 assumes an 'Ffh-bound' conformation in the presence of GppNHp.
Figure 6: Binding of Ffh to FtsY exposes the N-terminal helix of FtsY.
Figure 7: Model for Ffh–FtsY structural rearrangement upon complex formation.
Figure 8: Thermodynamic model describing the mechanism of SRP RNA control of the interaction of the SRP and SR.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Egea, P.F., Stroud, R.M. & Walter, P. Targeting proteins to membranes: structure of the signal recognition particle. Curr. Opin. Struct. Biol. 15, 213–220 (2005).

    Article  CAS  Google Scholar 

  2. Keenan, R.J., Freymann, D.M., Stroud, R.M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001).

    Article  CAS  Google Scholar 

  3. Peluso, P., Shan, S.O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001).

    Article  CAS  Google Scholar 

  4. Miller, J.D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366, 351–354 (1993).

    Article  CAS  Google Scholar 

  5. Poritz, M.A. et al. An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250, 1111–1117 (1990).

    Article  CAS  Google Scholar 

  6. Miller, J.D., Bernstein, H.D. & Walter, P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657–659 (1994).

    Article  CAS  Google Scholar 

  7. Phillips, G.J. & Silhavy, T.J. The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359, 744–746 (1992).

    Article  CAS  Google Scholar 

  8. Eitan, A. & Bibi, E. The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY. J. Bacteriol. 186, 2492–2494 (2004).

    Article  CAS  Google Scholar 

  9. Bernstein, H.D., Zopf, D., Freymann, D.M. & Walter, P. Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog. Proc. Natl. Acad. Sci. USA 90, 5229–5233 (1993).

    Article  CAS  Google Scholar 

  10. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997).

    Article  CAS  Google Scholar 

  11. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–368 (1997).

    Article  CAS  Google Scholar 

  12. Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997).

    Article  CAS  Google Scholar 

  13. Focia, P.J., Shepotinovskaya, I.V., Seidler, J.A. & Freymann, D.M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    Article  CAS  Google Scholar 

  14. Egea, P.F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    Article  CAS  Google Scholar 

  15. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000).

    Article  CAS  Google Scholar 

  16. Keenan, R.J., Freymann, D.M., Walter, P. & Stroud, R.M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998).

    Article  CAS  Google Scholar 

  17. Zopf, D., Bernstein, H.D., Johnson, A.E. & Walter, P. The methionine-rich domain of the 54 kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517 (1990).

    Article  CAS  Google Scholar 

  18. de Leeuw, E. et al. Membrane association of FtsY, the E. coli SRP receptor. FEBS Lett. 416, 225–229 (1997).

    Article  CAS  Google Scholar 

  19. Angelini, S., Boy, D., Schiltz, E. & Koch, H.G. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. J. Cell Biol. 174, 715–724 (2006).

    Article  CAS  Google Scholar 

  20. Regalia, M., Rosenblad, M.A. & Samuelsson, T. Prediction of signal recognition particle RNA genes. Nucleic Acids Res. 30, 3368–3377 (2002).

    Article  CAS  Google Scholar 

  21. Rosenblad, M.A. & Samuelsson, T. Identification of chloroplast signal recognition particle RNA genes. Plant Cell Physiol. 45, 1633–1639 (2004).

    Article  CAS  Google Scholar 

  22. Brown, S. & Fournier, M.J. The 4.5 S RNA gene of Escherichia coli is essential for cell growth. J. Mol. Biol. 178, 533–550 (1984).

    Article  CAS  Google Scholar 

  23. Peluso, P. et al. Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 288, 1640–1643 (2000).

    Article  CAS  Google Scholar 

  24. Bradshaw, N. & Walter, P. The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. Mol. Biol. Cell 18, 2728–2734 (2007).

    Article  CAS  Google Scholar 

  25. Reyes, C.L., Rutenber, E., Walter, P. & Stroud, R.M. X-ray structures of the signal recognition particle receptor reveal targeting cycle intermediates. PLoS ONE 2, e607 (2007).

    Article  Google Scholar 

  26. Gawronski-Salerno, J. & Freymann, D. M. Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY. J. Struct. Biol. 158, 122–128 (2006).

    Article  Google Scholar 

  27. Focia, P.J., Gawronski-Salerno, J., Coon, J.S., V. & Freymann, D.M. Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site. J. Mol. Biol. 360, 631–643 (2006).

    Article  CAS  Google Scholar 

  28. Shepotinovskaya, I.V. & Freymann, D.M. Conformational change of the N domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY. Biochim. Biophys. Acta 1597, 107–114 (2002).

    Article  CAS  Google Scholar 

  29. Chandrasekar, S., Chartron, J., Jaru-Ampornpan, P. & Shan, S.O. Structure of the chloroplast signal recognition particle (SRP) receptor: domain arrangement modulates SRP-receptor interaction. J. Mol. Biol. 375, 425–436 (2008).

    Article  CAS  Google Scholar 

  30. Jagath, J.R., Rodnina, M.V. & Wintermeyer, W. Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J. Mol. Biol. 295, 745–753 (2000).

    Article  CAS  Google Scholar 

  31. Schmitz, U. et al. NMR studies of the most conserved RNA domain of the mammalian signal recognition particle (SRP). RNA 2, 1213–1227 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shan, S.O. & Walter, P. Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor. Biochemistry 44, 6214–6222 (2005).

    Article  CAS  Google Scholar 

  33. Sprangers, R. & Kay, L.E. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622 (2007).

    Article  CAS  Google Scholar 

  34. Gawronski-Salerno, J., Coon, J.S., V., Focia, P.J. & Freymann, D.M. X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases. Proteins 66, 984–995 (2007).

    Article  CAS  Google Scholar 

  35. Gariani, T., Samuelsson, T. & Sauer-Eriksson, A.E. Conformational variability of the GTPase domain of the signal recognition particle receptor FtsY. J. Struct. Biol. 153, 85–96 (2006).

    Article  CAS  Google Scholar 

  36. Shan, S.O., Stroud, R.M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2, e320 (2004).

    Article  Google Scholar 

  37. Lu, Y. et al. Evidence for a novel GTPase priming step in the SRP protein targeting pathway. EMBO J. 20, 6724–6734 (2001).

    Article  CAS  Google Scholar 

  38. Chu, F. et al. Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 16454–16459 (2004).

    Article  CAS  Google Scholar 

  39. Parlitz, R. et al. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176–32184 (2007).

    Article  CAS  Google Scholar 

  40. Bahari, L. et al. Membrane targeting of ribosomes and their release require distinct and separable functions of FtsY. J. Biol. Chem. 282, 32168–32175 (2007).

    Article  CAS  Google Scholar 

  41. Gross, J.D., Gelev, V.M. & Wagner, G. A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes. J. Biomol. NMR 25, 235–242 (2003).

    Article  CAS  Google Scholar 

  42. Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. & Kay, L.E. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomol. NMR 13, 369–374 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Guthrie, P. Egea and members of the Walter laboratory for insightful comments and careful reading of the manuscript. This work was supported by funding to P.W. from the US National Institutes of Health and the Howard Hughes Medical Institute. The Jane Coffin Childs Memorial Fund supports S.B.N. N.B. was supported by a predoctoral fellowship from the US National Science Foundation. J.D.G. and S.N.F. were supported by the Sandler Family Foundation for Basic Sciences. S.N.F. was supported in part by the Achievement Awards for College Scientists (ARCS) Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.B.N. and N.B. prepared reagents and performed Ffh–FtsY association and dissociation assays; N.B. carried out GTPase experiments; N.B., S.N.F. and J.D.G. designed, executed and interpreted the NMR experiments; S.B.N. performed partial proteolysis assays; S.B.N., N.B. and P.W. wrote the article.

Corresponding author

Correspondence to Peter Walter.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 3875 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neher, S., Bradshaw, N., Floor, S. et al. SRP RNA controls a conformational switch regulating the SRP–SRP receptor interaction. Nat Struct Mol Biol 15, 916–923 (2008). https://doi.org/10.1038/nsmb.1467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing