Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATP-dependent chromatin remodeling shapes the DNA replication landscape

Abstract

The eukaryotic DNA replication machinery must traverse every nucleosome in the genome during S phase. As nucleosomes are generally inhibitory to DNA-dependent processes, chromatin structure must undergo extensive reorganization to facilitate DNA synthesis. However, the identity of chromatin-remodeling factors involved in replication and how they affect DNA synthesis is largely unknown. Here we show that two highly conserved ATP-dependent chromatin-remodeling complexes in Saccharomyces cerevisiae, Isw2 and Ino80, function in parallel to promote replication fork progression. As a result, Isw2 and Ino80 have especially important roles for replication of late-replicating regions during periods of replication stress. Both Isw2 and Ino80 complexes are enriched at sites of replication, suggesting that these complexes act directly to promote fork progression. These findings identify ATP-dependent chromatin-remodeling complexes that promote DNA replication and define a specific stage of replication that requires remodeling for normal function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MMS sensitivity of isw2 nhp10 mutants is due to a prolonged S phase.
Figure 2: Isw2 and Ino80 complexes are required for efficient replication of late-replicating regions in the presence of MMS.
Figure 3: Replication fork progression is slowed in isw2 nhp10 mutants.
Figure 4: Isw2 and Ino80 may directly facilitate DNA replication.
Figure 5: Isw2 and Ino80 promote replication in the absence of MMS.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, C.L. & Peterson, C.L. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65, 115–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Varga-Weisz, P. Chromatin remodeling factors and DNA replication. Prog. Mol. Subcell. Biol. 38, 1–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ataian, Y. & Krebs, J.E. Five repair pathways in one context: chromatin modification during DNA repair. Biochem. Cell Biol. 84, 490–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Jaskelioff, M., Van Komen, S., Krebs, J.E., Sung, P. & Peterson, C.L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212–9218 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. van Attikum, H. & Gasser, S.M. ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4, 1011–1014 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Eisen, J.A., Sweder, K.S. & Hanawalt, P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fazzio, T.G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12, 1333–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol. 13, 633–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Papamichos-Chronakis, M., Krebs, J.E. & Peterson, C.L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437–2449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Morrison, A.J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Raghuraman, M.K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. McCarroll, R.M. & Fangman, W.L. Time of replication of yeast centromeres and telomeres. Cell 54, 505–513 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Alvino, G.M. et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 27, 6396–6406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 8, 148–155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wyrick, J.J. et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357–2360 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Nieduszynski, C.A., Knox, Y. & Donaldson, A.D. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 20, 1874–1879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santocanale, C. & Diffley, J.F.A. Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615–618 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Tercero, J.A. & Diffley, J.F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Fazzio, T.G. et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol. 21, 6450–6460 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang, M., Bellaoui, M., Boone, C. & Brown, G.W. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc. Natl. Acad. Sci. USA 99, 16934–16939 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugino, A. Yeast DNA polymerases and their role at the replication fork. Trends Biochem. Sci. 20, 319–323 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Burgers, P.M. Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma 107, 218–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Papamichos-Chronakis, M. & Peterson, C.L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol. 15, 338–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Donaldson, A.D. et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell 2, 173–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Falbo, K.B. & Shen, X. Chromatin remodeling in DNA replication. J. Cell. Biochem. 97, 684–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11, 341–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32, 627–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Bozhenok, L., Wade, P.A. & Varga-Weisz, P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21, 2231–2241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poot, R.A. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat. Cell Biol. 6, 1236–1244 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24, 120–127 (2005).

    Article  PubMed  Google Scholar 

  38. Thomas, B.J. & Rothstein, R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of Rad52 and Rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123, 725–738 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, X., Muller, E.G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519–2524 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Lindstrom, K.C., Vary, J.C. Jr, Parthun, M.R., Delrow, J. & Tsukiyama, T. Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression. Mol. Cell. Biol. 26, 6117–6129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gelbart, M.E., Bachman, N., Delrow, J., Boeke, J.D. & Tsukiyama, T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev. 19, 942–954 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nieduszynski, C.A., Hiraga, S., Ak, P., Benham, C.J. & Donaldson, A.D. OriDB: a DNA replication origin database. Nucleic Acids Res. 35, D40–D46 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G.M. Alvino, S. Biggins, B.J. Brewer, D. Collingwood, H.S. Malik, M.K. Raghuraman and members of the Tsukiyama laboratory for critical reading of the manuscript; J.F.X. Diffley (Cancer Research UK) for the YJT80 strain; members of the Biggins and Brewer-Raghuraman laboratories for helpful discussions; D. Collingwood for help with analysis of replication data; H.S. Malik for the manuscript title suggestion; C.L. Peterson for sharing data before publication; and G.M. Alvino for a DNA-labeling protocol for microarrays, technical advice on density transfer experiments and help with replication data analysis. This work was supported by grants to T.T. from the US National Institutes of Health (NIH) and the Leukemia and Lymphoma Society. J.A.V. and T.J.K. were supported in part by training grants from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

J.A.V. designed and conducted the drug sensitivity, FACS, DNA microarray and DNA replication experiments, and wrote the manuscript; T.J.K. designed and conducted the ChIP experiments; T.T. supervised the project and contributed as the senior author. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Toshio Tsukiyama.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–4, Supplementary Discussion and Supplementary Methods (PDF 3821 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, J., Kwong, T. & Tsukiyama, T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 15, 477–484 (2008). https://doi.org/10.1038/nsmb.1419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing