Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disorder-order folding transitions underlie catalysis in the helicase motor of SecA

Abstract

SecA is a helicase-like motor that couples ATP hydrolysis with the translocation of extracytoplasmic protein substrates. As in most helicases, this process is thought to occur through nucleotide-regulated rigid-body movement of the motor domains. NMR, thermodynamic and biochemical data show that SecA uses a novel mechanism wherein conserved regions lining the nucleotide cleft undergo cycles of disorder-order transitions while switching among functional catalytic states. The transitions are regulated by interdomain interactions mediated by crucial 'arginine finger' residues located on helicase motifs. Furthermore, we show that the nucleotide cleft allosterically communicates with the preprotein substrate–binding domain and the regulatory, membrane-inserting C domain, thereby allowing for the coupling of the ATPase cycle to the translocation activity. The intrinsic plasticity and functional disorder-order folding transitions coupled to ligand binding seem to provide a precise control of the catalytic activation process and simple regulation of allosteric mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The helicase motor of E. coli SecA is intrinsically dynamic.
Figure 2: The helicase motor domains interact transiently.
Figure 3: Fast backbone motions of isolated IRA2.
Figure 4: Effect on IRA2 induced by ADP binding to SecAΔC.
Figure 5: Thermodynamic analysis of nucleotide binding to SecAΔC and SecA.
Figure 6: Effect of the D649A mutation on SecA properties.
Figure 7: Allosteric effect of the presence of IRA2 and ADP binding to SecAΔC on PBD.
Figure 8: Model of conformational and dynamic changes in the helicase motor of SecA as a function of the nucleotide state, as suggested by the present NMR, thermodynamic and biochemical data.

Similar content being viewed by others

References

  1. Vrontou, E. & Economou, A. Structure and function of SecA, the preprotein translocase nanomotor. Biochim. Biophys. Acta 1694, 67–80 (2004).

    Article  CAS  Google Scholar 

  2. Driessen, A.J., Manting, E.H. & van der Does, C. The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol. 8, 492–498 (2001).

    Article  CAS  Google Scholar 

  3. Mori, H. & Ito, K. The Sec protein-translocation pathway. Trends Microbiol. 9, 494–500 (2001).

    Article  CAS  Google Scholar 

  4. Osborne, A.R., Rapoport, T.A. & van den Berg, B. Protein translocation by the Sec61/Secy channel. Annu. Rev. Cell Dev. Biol. 21, 529–550 (2005).

    Article  CAS  Google Scholar 

  5. Hunt, J.F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002).

    Article  CAS  Google Scholar 

  6. Sharma, V. et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl. Acad. Sci. USA 100, 2243–2248 (2003).

    Article  CAS  Google Scholar 

  7. Sianidis, G. et al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20, 961–970 (2001).

    Article  CAS  Google Scholar 

  8. Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    Article  CAS  Google Scholar 

  9. Tanner, N.K. & Linder, P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8, 251–262 (2001).

    Article  CAS  Google Scholar 

  10. Story, R.M., Weber, I.T. & Steitz, T.A. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318–325 (1992).

    Article  CAS  Google Scholar 

  11. Papanikou, E. et al. Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep. 5, 807–811 (2004).

    Article  CAS  Google Scholar 

  12. Delagoutte, E. & von Hippel, P.H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: structures and properties of isolated helicases. Q. Rev. Biophys. 35, 431–478 (2002).

    Article  CAS  Google Scholar 

  13. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232–241 (2004).

    Article  CAS  Google Scholar 

  14. Baud, C. et al. Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain. J. Biol. Chem. 277, 13724–13731 (2002).

    Article  CAS  Google Scholar 

  15. Papanikou, E. et al. Identification of the preprotein binding domain of SecA. J. Biol. Chem. 280, 43209–43217 (2005).

    Article  CAS  Google Scholar 

  16. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994).

    Article  CAS  Google Scholar 

  17. Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133–1145 (1999).

    Article  CAS  Google Scholar 

  18. Vrontou, E., Karamanou, S., Baud, C., Sianidis, G. & Economou, A. Global co-ordination of protein translocation by the SecA IRA1 switch. J. Biol. Chem. 279, 22490–22497 (2004).

    Article  CAS  Google Scholar 

  19. Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271–280 (1990).

    Article  CAS  Google Scholar 

  20. Triplett, T.L. et al. Functional signal peptides bind a soluble N-terminal fragment of SecA and inhibit its ATPase activity. J. Biol. Chem. 276, 19648–19655 (2001).

    Article  CAS  Google Scholar 

  21. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  Google Scholar 

  22. Ye, J., Osborne, A.R., Groll, M. & Rapoport, T.A. RecA-like motor ATPases–lessons from structures. Biochim. Biophys. Acta 1659, 1–18 (2004).

    Article  CAS  Google Scholar 

  23. Gai, D., Zhao, R., Li, D., Finkielstein, C.V. & Chen, X.S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004).

    Article  CAS  Google Scholar 

  24. Mancini, E.J. et al. Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 118, 743–755 (2004).

    Article  CAS  Google Scholar 

  25. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  26. Korolev, S., Hsieh, J., Gauss, G.H., Lohman, T.M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647 (1997).

    Article  CAS  Google Scholar 

  27. Karpowich, N. et al. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9, 571–586 (2001).

    Article  CAS  Google Scholar 

  28. Wang, J. Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J. Struct. Biol. 148, 259–267 (2004).

    Article  CAS  Google Scholar 

  29. Savvides, S.N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).

    Article  CAS  Google Scholar 

  30. Bernstein, D.A., Zittel, M.C. & Keck, J.L. High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J. 22, 4910–4921 (2003).

    Article  CAS  Google Scholar 

  31. Shi, H., Cordin, O., Minder, C.M., Linder, P. & Xu, R.M. Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc. Natl. Acad. Sci. USA 101, 17628–17633 (2004).

    Article  CAS  Google Scholar 

  32. Xing, X. & Bell, C.E. Crystal structures of Escherichia coli RecA in complex with MgADP and MnAMP-PNP. Biochemistry 43, 16142–16152 (2004).

    Article  CAS  Google Scholar 

  33. Osborne, A.R., Clemons, W.M., Jr. & Rapoport, T.A. A large conformational change of the translocation ATPase SecA. Proc. Natl. Acad. Sci. USA 101, 10937–10942 (2004).

    Article  CAS  Google Scholar 

  34. Chou, Y.T., Swain, J.F. & Gierasch, L.M. Functionally significant mobile regions of Escherichia coli SecA ATPase identified by NMR. J. Biol. Chem. 277, 50985–50990 (2002).

    Article  CAS  Google Scholar 

  35. Caruthers, J.M., Johnson, E.R. & McKay, D.B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl. Acad. Sci. USA 97, 13080–13085 (2000).

    Article  CAS  Google Scholar 

  36. Story, R.M., Li, H. & Abelson, J.N. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 98, 1465–1470 (2001).

    Article  CAS  Google Scholar 

  37. Zhao, R., Shen, J., Green, M.R., MacMorris, M. & Blumenthal, T. Crystal structure of UAP56, a DExD/H-box protein involved in pre-mRNA splicing and mRNA export. Structure 12, 1373–1381 (2004).

    Article  CAS  Google Scholar 

  38. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  39. Kalodimos, C.G. et al. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 305, 386–389 (2004).

    Article  CAS  Google Scholar 

  40. Akke, M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr. Opin. Struct. Biol. 12, 642–647 (2002).

    Article  CAS  Google Scholar 

  41. Cliff, M.J., Williams, M.A., Brooke-Smith, J., Barford, D. & Ladbury, J.E. Molecular recognition via coupled folding and binding in a TPR domain. J. Mol. Biol. 346, 717–732 (2005).

    Article  CAS  Google Scholar 

  42. Baker, B.M. & Murphy, K.P. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996).

    Article  CAS  Google Scholar 

  43. Spolar, R.S. & Record, M.T., Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  CAS  Google Scholar 

  44. Bruzzese, F.J. & Connelly, P.R. Allosteric properties of inosine monophosphate dehydrogenase revealed through the thermodynamics of binding of inosine 5′-monophosphate and mycophenolic acid. Temperature dependent heat capacity of binding as a signature of ligand-coupled conformational equilibria. Biochemistry 36, 10428–10438 (1997).

    Article  CAS  Google Scholar 

  45. Grucza, R.A., Futterer, K., Chan, A.C. & Waksman, G. Thermodynamic study of the binding of the tandem-SH2 domain of the Syk kinase to a dually phosphorylated ITAM peptide: evidence for two conformers. Biochemistry 38, 5024–5033 (1999).

    Article  CAS  Google Scholar 

  46. Kumaran, S., Grucza, R.A. & Waksman, G. The tandem Src homology 2 domain of the Syk kinase: a molecular device that adapts to interphosphotyrosine distances. Proc. Natl. Acad. Sci. USA 100, 14828–14833 (2003).

    Article  CAS  Google Scholar 

  47. den Blaauwen, T., Fekkes, P., de Wit, J.G., Kuiper, W. & Driessen, A.J. Domain interactions of the peripheral preprotein translocase subunit SecA. Biochemistry 35, 11994–12004 (1996).

    Article  CAS  Google Scholar 

  48. Fak, J.J. et al. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Biochemistry 43, 7307–7327 (2004).

    Article  CAS  Google Scholar 

  49. Bourne, H.R. G proteins. The arginine finger strikes again. Nature 389, 673–674 (1997).

    Article  CAS  Google Scholar 

  50. Crampton, D.J., Guo, S., Johnson, D.E. & Richardson, C.C. The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling. Proc. Natl. Acad. Sci. USA 101, 4373–4378 (2004).

    Article  CAS  Google Scholar 

  51. Or, E., Navon, A. & Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470–4479 (2002).

    Article  CAS  Google Scholar 

  52. Kourtz, L. & Oliver, D. Tyr-326 plays a critical role in controlling SecA-preprotein interaction. Mol. Microbiol. 37, 1342–1356 (2000).

    Article  CAS  Google Scholar 

  53. Schmidt, M., Ding, H., Ramamurthy, V., Mukerji, I. & Oliver, D. Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by prlD and azi mutations. J. Biol. Chem. 275, 15440–15448 (2000).

    Article  CAS  Google Scholar 

  54. Ramamurthy, V., Dapic, V. & Oliver, D. secG and temperature modulate expression of azide-resistant and signal sequence suppressor phenotypes of Escherichia coli secA mutants. J. Bacteriol. 180, 6419–6423 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, D., Windsor, W.T. & Wyss, D.F. Double-stranded DNA-induced localized unfolding of HCV NS3 helicase subdomain 2. Protein Sci. 12, 2757–2767 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank L. Gierasch for helpful discussions, F. Jordan for the use of the VP-ITC, Y. Papanikolau and K. Petratos for sharing data before publication, S. Papanikou and B. Pozidis for help with chromatography and R. Monteiro, A. Khan and M. Vougioukalaki for experiments performed during their undergraduate training. Initial experiments were supported by an EU large-scale facility grant to SON-NMR Utrecht, The Netherlands. Research was supported by a Scientist Development Grant from the American Heart Association (to C.G.K.), a Johnson & Johnson Discovery Award (to C.G.K.), a Rutgers Busch grant (to C.G.K.), grants from the EU (RTN1-1999-00149, QLK3-CT-2000-00082 and QLK3-CT-2000-00082; to A.E), Pfizer, Inc. and grants from the Greek General Secretariat of Research (01AKMON46 and PENED03ED623; to A.E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos G Kalodimos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Secondary structural elements of IRA2 in solution (PDF 226 kb)

Supplementary Fig. 2

ITC traces and binding isotherms of nucleotide interaction with SecA and SecAΔC (PDF 320 kb)

Supplementary Fig. 3

Genetic complementation assay for secA and secA-D649A genes (PDF 176 kb)

Supplementary Fig. 4

Thermodynamic analysis of nucleotide interaction with SecA, SecA-R574K and SecAΔC (PDF 204 kb)

Supplementary Fig. 5

Effect of 'arginine fingers' mutation on SecA properties (PDF 201 kb)

Supplementary Fig. 6

1H-15N HSQC spectra of PBD, SecAΔC-ΔIRA2 and effect of ADP binding to SecAΔC on PBD (PDF 402 kb)

Supplementary Methods (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keramisanou, D., Biris, N., Gelis, I. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat Struct Mol Biol 13, 594–602 (2006). https://doi.org/10.1038/nsmb1108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing