Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p

Abstract

The SAM domain of the Saccharomyces cerevisiae post-transcriptional regulator Vts1p epitomizes a subfamily of SAM domains conserved from yeast to humans that function as sequence-specific RNA-binding domains. Here we report the 2.0-Å X-ray structure of the Vts1p SAM domain bound to a high-affinity RNA ligand. Specificity of RNA binding arises from the association of a guanosine loop base with a shallow pocket on the SAM domain and from multiple SAM domain contacts to the unique backbone structure of the loop, defined in part by a nonplanar base pair within the loop. We have validated NNF1 as an endogenous target of Vts1p among 79 transcripts that copurify with Vts1p. Bioinformatic analysis of these mRNAs demonstrates that the RNA-binding specificity of Vts1p in vivo is probably more stringent than that of the isolated SAM domain in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical and structural analysis of SRE binding by Vts1p-SAM.
Figure 2: The SRE pentaloop structure exhibits similarity to the UNCG and SECIS loops.
Figure 3: Features of the Vts1p-SAM–RNA binding interface.
Figure 4: Summary of fluorescence polarization binding measurements of Vts1p-SAM to SRE pentaloop variants bearing natural and synthetic substitutions.
Figure 5: Full-length Vts1p shows greater RNA-binding specificity than the isolated SAM domain.
Figure 6: The SRE consensus CNGG(N)n is prevalent among a population of putative Vts1p targets in yeast.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Gene Expression Omnibus

Protein Data Bank

References

  1. Kloc, M., Zearfoss, N.R. & Etkin, L.D. Mechanisms of subcellular mRNA localization. Cell 108, 533–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Moore, M.J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Smibert, C.A., Wilson, J.E., Kerr, K. & Macdonald, P.M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10, 2600–2609 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Smibert, C.A., Lie, Y.S., Shillinglaw, W., Henzel, W.J. & Macdonald, P.M. Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5, 1535–1547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dahanukar, A., Walker, J.A. & Wharton, R.P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4, 209–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Semotok, J.L. et al. Smaug recruits the CCR/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol. 15, 284–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Gavis, E.R. & Lehmann, R. Translational regulation of nanos by RNA localization. Nature 369, 315–318 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Nelson, M.R., Leidal, A.M. & Smibert, C.A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol. 10, 614–621 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Green, J.B., Gardner, C.D., Wharton, R.P. & Aggarwal, A.K. RNA recognition via the SAM domain of Smaug. Mol. Cell 11, 1537–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, C.A. et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J. 20, 4173–4182 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, C.A., Gingery, M., Pilpa, R.M. & Bowie, J.U. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453–457 (2002).

    CAS  PubMed  Google Scholar 

  14. Kim, C.A., Sawaya, M.R., Cascio, D., Kim, W. & Bowie, J.U. Structural organization of a Sex-comb-on-midleg/polyhomeotic copolymer. J. Biol. Chem. 280, 27769–27775 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Dahanukar, A. & Wharton, R.P. The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev. 10, 2610–2620 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Gavis, E.R., Lunsford, L., Bergsten, S.E. & Lehmann, R. A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122, 2791–2800 (1996).

    CAS  PubMed  Google Scholar 

  17. Bergsten, S.E. & Gavis, E.R. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development 126, 659–669 (1999).

    CAS  PubMed  Google Scholar 

  18. Baez, M.V. & Boccaccio, G.L. Mammalian smaug is a translational repressor that forms cytoplasmic foci similar to stress granules. J. Biol. Chem., published online 12 October 2005 (10.1074/jbc.M508374200).

  19. Aviv, T. et al. The NMR and X-ray structures of the Saccharomyces cerevisiae Vts1 SAM domain define a surface for the recognition of RNA hairpins. J. Mol. Biol. (in the press).

  20. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Ennifar, E. et al. The crystal structure of UUCG tetraloop. J. Mol. Biol. 304, 35–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Yoshizawa, S. et al. Structural basis for mRNA recognition by elongation factor SelB. Nat. Struct. Mol. Biol. 12, 198–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Klosterman, P.S., Hendrix, D.K., Tamura, M., Holbrook, S.R. & Brenner, S.E. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic Acids Res. 32, 2342–2352 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Hieronymus, H. & Silver, P.A. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat. Genet. 33, 155–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Shepard, K.A. et al. Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl. Acad. Sci. USA 100, 11429–11434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerber, A.P., Herschlag, D. & Brown, P.O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Engebrecht, J., Masse, S., Davis, L., Rose, K. & Kessel, T. Yeast meiotic mutants proficient for the induction of ectopic recombination. Genetics 148, 581–598 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zubenko, G.S. & Jones, E.W. Protein degradation, meiosis and sporulation in proteinase-deficient mutants of Saccharomyces cerevisiae. Genetics 97, 45–64 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Athenstaedt, K. & Daum, G. 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J. Biol. Chem. 275, 235–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Deutschbauer, A.M., Williams, R.M., Chu, A.M. & Davis, R.W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99, 15530–15535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, L., Chen, O.S., McVey Ward, D. & Kaplan, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276, 29515–29519 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Satyanarayana, C., Schroder-Kohne, S., Craig, E.A., Schu, P.V. & Horst, M. Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. FEBS Lett. 470, 232–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wichmann, H., Hengst, L. & Gallwitz, D. Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p). Cell 71, 1131–1142 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Dilcher, M., Kohler, B. & von Mollard, G.F. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276, 34537–34544 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hadwiger, J.A., Wittenberg, C., Richardson, H.E., de Barros Lopes, M. & Reed, S.I. A family of cyclin homologs that control the G1 phase in yeast. Proc. Natl. Acad. Sci. USA 86, 6255–6259 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edwards, M.C. et al. Human CPR (cell cycle progression restoration) genes impart a Far-phenotype on yeast cells. Genetics 147, 1063–1076 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sudbery, P.E., Goodey, A.R. & Carter, B.L. Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature 288, 401–404 (1980).

    Article  CAS  PubMed  Google Scholar 

  40. Dahmann, C., Diffley, J.F. & Nasmyth, K.A. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5, 1257–1269 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Shan, X., Xue, Z., Euskirchen, G. & Melese, T. NNF1 is an essential yeast gene required for proper spindle orientation, nucleolar and nuclear envelope structure and mRNA export. J. Cell Sci. 110, 1615–1624 (1997).

    CAS  PubMed  Google Scholar 

  42. Shafaatian, R., Payton, M.A. & Reid, J.D. PWP2, a member of the WD-repeat family of proteins, is an essential Saccharomyces cerevisiae gene involved in cell separation. Mol. Gen. Genet. 252, 101–114 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M. Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97, 491–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  47. Storoni, L.C., McCoy, A.J. & Reed, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  PubMed  Google Scholar 

  48. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  50. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  52. Laskowski, R.A., Moss, D.S. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  53. Tyers, M., Tokiwa, G. & Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12, 1955–1968 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Tyers and P. Jorgensen for assistance with microarray analyses and R. Collins and B. Derry for critical reading of the manuscript. This work was supported by operating grants to F.S. from the Canadian Institutes for Health Research and to C.A.S. from the National Cancer Institute of Canada with funds from the Terry Fox Run. F.S. is the recipient of a National Cancer Institute of Canada Scientist award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sicheri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SAM domain recognition of the SRE is conserved across eukaryotes (PDF 588 kb)

Supplementary Fig. 2

Packing interactions in the crystal structure (PDF 365 kb)

Supplementary Fig. 3

Representative 2Fo – Fc electron density map highlights the disorder state of loop position 5 (PDF 508 kb)

Supplementary Fig. 4

Identifying Vts1 targets by microarray analysis (PDF 77 kb)

Supplementary Fig. 5

Binding of 6- and 7-base SRE loops to wild-type Vts1p using a gel shift assay (PDF 106 kb)

Supplementary Table 1

RNA determinants for SAM domain binding (PDF 65 kb)

Supplementary Table 2

Putative Vts1 targets in yeast identified by microarray analysis (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aviv, T., Lin, Z., Ben-Ari, G. et al. Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat Struct Mol Biol 13, 168–176 (2006). https://doi.org/10.1038/nsmb1053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing