Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reactive oxygen species-mediated therapeutic control of bladder cancer

Abstract

Urinary bladder cancer is the fifth most common cancer in the US and the most costly cancer to manage because it requires life-long surveillance to monitor for recurrence and advanced progression. Urothelial carcinomas account for more than 90% of urinary bladder cancer cases. Transurethral resection and intravesical chemotherapy or immunotherapy are effective short-term treatments of urothelial carcinoma, but long-term management has not yet been optimized. Recent therapeutic strategies emphasize the targeted interference with aberrantly-regulated signaling modulators that result from genomic alterations. However, targeted therapeutic agents might not distinguish cancer cells from their normal counterparts, resulting in undesirable adverse effects. Thus, a new approach for the treatment of urothelial carcinoma has been suggested that differentially augments cancer-associated events, leading to selective death of cancer cells but not normal cells. Many aberrantly-regulated signaling modulators are associated with the elevation of reactive oxygen species (ROS), and an increasing number of studies report agents with the ability to induce ROS in cancer cells. Accordingly, therapeutic augmentation of ROS to a lethal level in cancer cells only would induce selective death of tumor cells but not normal cells, leading to a highly effective chemotherapy strategy for urothelial carcinoma.

Key Points

  • Human urinary bladder cancer is the fifth most common cancer in the US and the most costly cancer to manage owing to high rates of recurrence and progression

  • Urothelial papillary carcinoma, carcinoma in situ, and invasive carcinoma of the bladder account for more than 90% of urinary bladder cancer cases

  • Genomic alterations of oncogenes and tumor suppressor genes are identified by their tight association with the development and progression of urothelial carcinomas

  • Many aberrantly-regulated signaling modulators, resulting from genomic alterations, detectably potentiate the reactive oxygen species (ROS)-generating machinery in urothelial carcinoma cells

  • An increasing number of studies report therapeutic agents that induce ROS elevation in cancer cells

  • A ROS-mediated therapeutic strategy that augments cancer-associated ROS elevation could selectively induce apoptosis of urothelial carcinoma cells, bypassing normal cells and producing minimal adverse effects

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Divergent pathways of the genomic alterations involved in urothelial tumorigenesis.
Figure 2: Genetic alteration-potentiated ROS machinery for selective cell death.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts & Figures 2006 [online], (2011).

  2. American Cancer Society. Cancer Facts & Figures 2007 [online], (2011).

  3. American Cancer Society. Cancer Facts & Figures 2008 [online], (2011).

  4. American Cancer Society. Cancer Facts & Figures 2009 [online], (2011).

  5. American Cancer Society. Cancer Facts & Figures 2010 [online], (2011).

  6. Botteman, M. F., Pashos, C. L., Redaelli, A., Laskin, B. & Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics 21, 1315–1330 (2003).

    Article  PubMed  Google Scholar 

  7. Reuter, V. E. The pathology of bladder cancer. Urology 67 (3 Suppl. 1), 11–17 (2006).

    Article  PubMed  Google Scholar 

  8. Sexton, W. J. et al. Bladder cancer: a review of non-muscle invasive disease. Cancer Control 17, 256–268 (2010).

    Article  PubMed  Google Scholar 

  9. Castillo-Martin, M., Domingo-Domenech, J., Karni-Schmidt, O., Matos, T. & Cordon-Cardo, C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol. 28, 401–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Goebell, P. J. & Knowles, M. A. Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol. 28, 409–428 (2010).

    Article  PubMed  Google Scholar 

  11. Wu, X. R. Urothelial tumorigenesis: a tale of divergent pathways. Nat. Rev. Cancer 5, 713–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Williamson, S. R. et al. Diagnosis, evaluation and treatment of carcinoma in situ of the urinary bladder: the state of the art. Crit. Rev. Oncol. Hematol. 76, 112–126 (2010).

    Article  PubMed  Google Scholar 

  13. Choudhary, S. & Wang, H. C. Proapoptotic ability of oncogenic H-Ras to facilitate apoptosis induced by histone deacetylase inhibitors in human cancer cells. Mol. Cancer Ther. 6, 1099–1111 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Macaluso, M., Montanari, M., Cinti, C. & Giordano, A. Modulation of cell cycle components by epigenetic and genetic events. Semin. Oncol. 32, 452–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Z & Yu, Q. E2F1-mediated apoptosis as a target of cancer therapy. Curr. Mol. Pharmacol. 2, 149–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Tomlinson, D. C., Baldo, O., Harnden, P. & Knowles, M. A. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J. Pathol. 213, 91–98 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hart, K. C. et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19, 3309–3320 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kanai, M., Göke, M., Tsunekawa, S. & Podolsky, D. K. Signal transduction pathway of human fibroblast growth factor receptor 3. Identification of a novel 66-kDa phosphoprotein. J. Biol. Chem. 272, 6621–6628 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta. 1773, 1263–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Leicht, D. T. et al. Raf kinases: function, regulation and role in human cancer. Biochim. Biophys. Acta. 1773, 1196–1212 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J. & Der, C. J. Increasing complexity of Ras signaling. Oncogene 17, 1395–1413 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Jebar, A. H. et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24, 5218–5225 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, J. et al. Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res. 62, 4157–4163 (2002).

    CAS  PubMed  Google Scholar 

  24. López-Knowles, E. et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 66, 7401–7404 (2006).

    Article  PubMed  Google Scholar 

  25. Choudhary, S., Rathore, K. & Wang, H. C. Differential induction of reactive oxygen species through Erk1/2 and Nox-1 by FK228 for selective apoptosis of oncogenic H-Ras-expressing human urinary bladder cancer J82 cells. J. Cancer Res. Clin. Oncol. 137, 471–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Choudhary, S., Wang, K. K. A. & Wang, H. C. Oncogenic H-Ras, FK228, and exogenous H2O2 cooperatively activated the ERK pathway in selective induction of human urinary bladder cancer J82 cell death. Mol. Carcinog. 50, 215–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Kamata, T. Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci. 100, 1382–1388 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Pervaiz, S. & Clement, M. V. Superoxide anion: oncogenic reactive oxygen species? Int. J. Biochem. Cell. Biol. 39, 1297–1304 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, E. Y. et al. BLT2 promotes the invasion and metastasis of aggressive bladder cancer cells through a reactive oxygen species-linked pathway. Free Radic. Biol. Med. 49, 1072–1081 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Yoo, M. H., Song, H., Woo, C. H., Kim, H. & Kim, J. H. Role of the BLT2, a leukotriene B4 receptor, in Ras transformation. Oncogene 23, 9259–9268 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Shimada, K. et al. A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res. 69, 3157–3164 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Fliss, M. S. et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287, 2017–2019 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Dasgupta, S., Hoque, M. O., Upadhyay, S. & Sidransky, D. Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Res. 68, 700–706 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hempel, N., Ye, H., Abessi, B., Mian, B. & Melendez, J. A. Altered redox status accompanies progression to metastatic human bladder cancer. Free Radic. Biol. Med. 46, 42–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Cho, H. J. et al. Oncogenic H-Ras enhances DNA repair through the Ras/phosphatidylinositol 3-kinase/Rac1 pathway in NIH3T3 cells. Evidence for association with reactive oxygen species. J. Biol. Chem. 277, 19358–19366 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, J. Q., Li, S., Domann, F. E., Buettner, G. R. & Oberley, L. W. Superoxide generation in v-Ha-ras-transduced human keratinocyte HaCaT cells. Mol. Carcinog. 26, 180–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Santillo, M. et al. Opposing functions of Ki- and Ha-Ras genes in the regulation of redox signals. Curr. Biol. 11, 614–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, R., Li, B. & Qiu, M. Elevated superoxide production by active H-ras enhances human lung WI-38VA-13 cell proliferation, migration and resistance to TNF-alpha. Oncogene 20, 1486–1496 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Mitsushita, J., Lambeth, J. D. & Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 64, 3580–3585 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Shinohara, M. et al. Nox1 redox signaling mediates oncogenic Ras-induced disruption of stress fibers and focal adhesions by down-regulating Rho. J. Biol. Chem. 282, 17640–17648 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Choudhary, S. & Wang, H. C. Role of reactive oxygen species in proapoptotic ability of oncogenic H-Ras to increase human bladder cancer cell susceptibility to histone deacetylase inhibitor for caspase induction. J. Cancer Res. Clin. Oncol. 135, 1601–1613 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Choudhary, S., Rathore, K. & Wang, H. C. FK228 and oncogenic H-Ras synergistically induce Mek1/2 and Nox-1 to generate reactive oxygen species for differential cell death. Anticancer Drugs 21, 831–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Adachi, Y. et al. Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene 27, 4921–4932 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Matés, J. M., Segura, J. A., Alonso, F. J. & Márquez, J. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch. Toxicol. 82, 273–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal. 11, 1289–1299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pan, J. S., Hong, M. Z. & Ren, J. L. Reactive oxygen species: a double-edged sword in oncogenesis. World J. Gastroenterol. 15, 1702–1707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verschoor, M. L., Wilson, L. A. & Singh, G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can. J. Physiol. Pharmacol. 88, 204–219 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Spadaro, D. et al. The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol. Plant 138, 360–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Juarez, J. C. et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl Acad. Sci. USA 105, 7147–7152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tao, Q., Spring, S. C. & Terman, B. I. Comparison of the signaling mechanisms by which VEGF, H2O2, and phosphatase inhibitors activate endothelial cell ERK1/2 MAP-kinase. Microvasc. Res. 69, 36–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, K. & Esselman, W. J. Inhibition of PTPs by H2O2 regulates the activation of distinct MAPK pathways. Free Radic. Biol. Med. 33, 1121–1132 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, L. Z. et al. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med. 41, 1521–1533 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Tabet, F. et al. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ. Res. 103, 149–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, J. F., Zhang, X. & Groopman, J. E. Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J. Biol. Chem. 279, 27088–27097 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, P., Wang, Y. Z., Kagan, E. & Bonner, J. C. Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J. Biol. Chem. 275, 22479–22486 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, H. S., Song, M. C., Kwak, I. H., Park, T. J. & Lim, I. K. Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J. Biol. Chem. 278, 37497–37510 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Levinthal, D. J. & Defranco, D. B. Reversible oxidation of ERK-directed protein phosphatases drives oxidative toxicity in neurons. J. Biol. Chem. 280, 5875–5883 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kamata, H. et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Giannoni, E., Taddei, M. L. & Chiarugi, P. Src redox regulation: again in the front line. Free Radic. Biol. Med. 49, 516–527 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Hoyos, B. et al. Activation of c-Raf kinase by ultraviolet light. Regulation by retinoids. J. Biol. Chem. 277, 23949–23957 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Pasin, E., Josephson, D. Y., Mitra, A. P., Cote, R. J. & Stein, J. P. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev. Urol. 10, 31–43 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Heney, N. M. et al. Superficial bladder cancer: progression and recurrence. J. Urol. 130, 1083–1086 (1983).

    Article  CAS  PubMed  Google Scholar 

  65. Oosterlinck, W. Guidelines on diagnosis and treatment of superficial bladder cancer. Minerva Urol. Nefrol. 56, 65–72 (2004).

    CAS  PubMed  Google Scholar 

  66. Lamm, D. L., Riggs, D. R., Traynelis, C. L. & Nseyo, U. O. Apparent failure of current intravesical chemotherapy prophylaxis to influence the long-term course of superficial transitional cell carcinoma of the bladder. J. Urol. 153, 1444–1450 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Gontero, P. et al. Phase II study to investigate the ablative efficacy of intravesical administration of gemcitabine in intermediate-risk superficial bladder cancer (SBC). Eur. Urol. 46, 339–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Serretta, V., Galuffo, A., Pavone, C., Allegro, R. & Pavone-MacAluso, M. Gemcitabine in intravesical treatment of Ta-T1 transitional cell carcinoma of bladder: phase I-II study on marker lesions. Urology 65, 65–69 (2005).

    Article  PubMed  Google Scholar 

  69. Sylvester, R. J., van der Meijden, A. P. & Lamm, D. L. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J. Urol. 168, 1964–1970 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Witjes, J. A. Management of BCG failures in superficial bladder cancer: a review. Eur. Urol. 49, 790–797 (2006).

    Article  PubMed  Google Scholar 

  71. Chiong, E. & Esuvaranathan, K. New therapies for non-muscle-invasive bladder cancer. World J. Urol. 28, 71–78 (2010).

    Article  PubMed  Google Scholar 

  72. Huang, G. J. & Stein, J. P. Open radical cystectomy with lymphadenectomy remains the treatment of choice for invasive bladder cancer. Curr. Opin. Urol. 17, 369–375 (2007).

    Article  PubMed  Google Scholar 

  73. Sternberg, C. N. et al. M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for advanced transitional cell carcinoma of the urothelium. J. Urol. 139, 461–469 (1988).

    Article  CAS  PubMed  Google Scholar 

  74. Roberts, J. T. et al. Long-term survival results of a randomized trial comparing gemcitabine/cisplatin and methotrexate/vinblastine/doxorubicin/cisplatin in patients with locally advanced and metastatic bladder cancer. Ann. Oncol. 17 (Suppl. 5), v118–v122 (2006).

    Article  PubMed  Google Scholar 

  75. Sternberg, C. N. et al. Seven year update of an EORTC phase III trial of high-dose intensity MVAC chemotherapy and G-CSF vs. classic MVAC in advanced urothelial tract tumours. Eur. J. Cancer 42, 50–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Pliarchopoulou, K., Laschos, K. & Pectasides, D. Current chemotherapeutic options for the treatment of advanced bladder cancer: a review. Urol. Oncol. doi:10.1016/j.urolonc.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  77. Pollard, C., Smith, S. C. & Theodorescu, D. Molecular genesis of non-muscle-invasive urothelial carcinoma (NMIUC). Expert. Rev. Mol. Med. 12, e10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bellmunt, J., Hussain, M. & Dinney, C. P. Novel approaches with target therapies in bladder cancer. Therapy of bladder cancer by blockade of the epidermal growth factor receptor family. Crit. Rev. Oncol. Hematol. 46 (Suppl.), S85–S104 (2003).

    Article  PubMed  Google Scholar 

  79. Duggan, B. J. et al. The role of antisense oligonucleotides in the treatment of bladder cancer. Urol. Res. 30, 137–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Antico Arciuch, V. G., Alippe, Y., Carreras, M. C. & Poderoso, J. J. Mitochondrial kinases in cell signaling: Facts and perspectives. Adv. Drug Deliv. Rev. 61, 1234–1249 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Acharya, A., Das, I., Chandhok, D. & Saha, T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 3, 23–34 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Marks, P. A., Miller, T. & Richon, V. M. Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Espino, P. S., Drobic, B., Dunn, K. L. & Davie, J. R. Histone modifications as a platform for cancer therapy. J. Cell. Biochem. 94, 1088–1102 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Dokmanovic, M. & Marks, P. A. Prospects: histone deacetylase inhibitors. J. Cell. Biochem. 96, 293–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Ueda, H. et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. (Tokyo) 47, 301–310 (1994).

    Article  CAS  Google Scholar 

  88. Ueda, H. et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J. Antibiot. (Tokyo) 47, 315–323 (1994).

    Article  CAS  Google Scholar 

  89. Vigushin, D. M. FR-901228 Fujisawa/National Cancer Institute. Curr. Opin. Investig. Drugs 3, 1396–1402 (2002).

    CAS  PubMed  Google Scholar 

  90. Wagner, J. M., Hackanson, B., Lübbert, M. & Jung, M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics 1, 117–136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Furumai, R. et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62, 4916–4921 (2002).

    CAS  PubMed  Google Scholar 

  92. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Karam, J. A. et al. The use of histone deacetylase inhibitor FK228 and DNA hypomethylation agent 5-azacytidine in human bladder cancer therapy. Int. J. Cancer 120, 1795–1802 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Choudhary, S. & Wang, H. C. Pro-apoptotic activity of oncogenic H-Ras for histone deacetylase inhibitors to induce apoptosis of human cancer HT29 cells. J. Cancer Res. Clin. Oncol. 133, 725–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Fecteau, K. A., Mei, J. & Wang, H. C. Differential modulation of signaling pathways and apoptosis of ras-transformed 10T1/2 cells by the depsipeptide FR901228. J. Pharmacol. Exp. Ther. 300, 890–899 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Ungerstedt, J. S. et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA 102, 673–678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buckley, M. T. et al. The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo. J. Transl. Med. 5, 49 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Estrela, J. M., Ortega, A. & Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 43, 143–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Awasthi, Y. C. et al. Physiological and pharmacological significance of glutathione-conjugate transport. J. Toxicol. Environ. Health B Crit. Rev. 12, 540–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Pompella, A., Corti, A., Paolicchi, A., Giommarelli, C. & Zunino, F. Gamma-glutamyltransferase, redox regulation and cancer drug resistance. Curr. Opin. Pharmacol. 7, 360–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Ruzza, P., Rosato, A., Rossi, C. R., Floreani, M. & Quintieri L. Glutathione transferases as targets for cancer therapy. Anticancer Agents Med. Chem. 9, 763–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Sau, A., Pellizzari Tregno, F., Valentino, F., Federici, G. & Caccuri, A. M. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 500, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, X. & Flaig, T. W. Novel targeted agents for the treatment of bladder cancer: translating laboratory advances into clinical application. Int. Braz. J. Urol. 36, 273–282 (2010).

    Article  PubMed  Google Scholar 

  104. Miyajima, A. et al. Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br. J. Cancer 76, 206–210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tanaka, N. et al. Cis-dichlorodiammineplatinum upregulates angiotensin II type 1 receptors through reactive oxygen species generation and enhances VEGF production in bladder cancer. Mol. Cancer Ther. 9, 2982–2992 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Maeda, H. et al. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ. 11, 737–746 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Coyle, C. H., Philips, B. J., Morrisroe, S. N., Chancellor, M. B. & Yoshimura, N. Antioxidant effects of green tea and its polyphenols on bladder cells. Life Sci. 83, 12–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.-C. R. Wang and S. Choudhary contributed equally to researching data, discussing content and reviewing this manuscript. H.-C. R. Wang wrote the majority of the paper, with contributions from S. Choudhary.

Corresponding author

Correspondence to Hwa-Chain R. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HC., Choudhary, S. Reactive oxygen species-mediated therapeutic control of bladder cancer. Nat Rev Urol 8, 608–616 (2011). https://doi.org/10.1038/nrurol.2011.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing