Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple sclerosis genetics—is the glass half full, or half empty?

Abstract

Multiple sclerosis (MS) is a common and severe CNS disorder that is characterized by myelin loss, chronic inflammation, axonal and oligodendrocyte pathology, and progressive neurological dysfunction. Extensive epidemiological data confirm that genetic variation is an important determinant of susceptibility to MS, and suggest that such variation also influences the timing of symptom onset, the course of the disease, and the treatment response. Multicenter international collaborations have allowed large and well-characterized sample collections to be assembled that, when coupled with high-powered laboratory technologies, afford the opportunity to analyze the genome with increasing resolution and detail. The seven MS genome-wide association screens that have been completed in the past 3 years have substantially lengthened the list of MS genetic risk associations. Nevertheless, our knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed, although progress is likely to be rapid in the near future. The ensuing challenge will be to design effective functional studies that convincingly link genetic variation to the underlying pathophysiology of MS. Establishment of such connections might translate into clinically useful genetic biomarkers and reveal novel targets for therapy. This Review briefly summarizes well-established concepts of MS epidemiology and susceptibility, and discusses new knowledge emerging from genome-wide association studies.

Key Points

  • Genetic variation is an important determinant of susceptibility to and progression of multiple sclerosis (MS)

  • MS is one of the so-called complex genetic diseases, which are common disorders that are characterized by modest disease risk heritability and multifaceted gene–environment interactions

  • The human leukocyte antigen gene cluster represents by far the strongest MS susceptibility locus, and was identified in both candidate gene association and linkage studies

  • Genome-wide association studies have dramatically increased the number of MS risk associations; however, only a fraction of the heritability of this disease has been explained

  • With the aid of high-capacity technologies, next-generation studies will fully define the genetic mechanisms operating in MS and, hence, will assist in the formulation of a reliable model of pathogenesis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MS as a complex disease.
Figure 2: Pathway-oriented analysis.

Similar content being viewed by others

References

  1. Pugliatti, M. et al. The epidemiology of multiple sclerosis in Europe. Eur. J. Neurol. 13, 700–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hauser, S. L. & Oksenberg, J. R. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52, 61–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Hauser, S. L. & Goodin, D. S. In Harrison's Principle of Internal Medicine 17th edn Ch. 375 (eds Fauci, A. D. et al.) 2611–2621 (McGraw Hill, New York, 2008).

    Google Scholar 

  4. Henderson, A. P., Barnett, M. H., Parratt, J. D. & Prineas, J. W. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann. Neurol. 66, 739–753 (2009).

    Article  PubMed  Google Scholar 

  5. Lucchinetti, C. Pathological heterogeneity of idiopathic central nervous system inflammatory demyelinating disorders. Curr. Top. Microbiol. Immunol. 318, 19–43 (2008).

    CAS  PubMed  Google Scholar 

  6. Breij, E. C. et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann. Neurol. 63, 16–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Alter, M., Leibowitz, U. & Speer, J. Risk of multiple sclerosis related to age at migration to Israel. Arch. Neurol. 15, 234–237 (1996).

    Article  Google Scholar 

  8. Dean, G. & Kurtzke, J. F. On the risk of multiple sclerosis according to age at migration to South Africa. Br. Med. J. 3, 725–729 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cabre, P. et al. Role of return migration in the emergence of multiple sclerosis in the French West Indies. Brain 128, 2899–2910 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Islam, T. et al. Differential twin concordance for multiple sclerosis by latitude of birthplace. Ann. Neurol. 60, 56–64 (2006).

    Article  PubMed  Google Scholar 

  11. Islam, T., Gauderman, W. J., Cozen, W. & Mack, T. M. Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology 69, 381–388 (2007).

    Article  PubMed  Google Scholar 

  12. Beretich, B. D. & Beretich, T. M. Explaining multiple sclerosis prevalence by ultraviolet exposure: a geospatial analysis. Mult. Scler. 15, 891–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Willer, C. J. et al. Timing of birth and risk of multiple sclerosis: population based study. BMJ 330, 120 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sotgiu, S. et al. Seasonal fluctuation of multiple sclerosis births in Sardinia. J. Neurol. 253, 38–44 (2006).

    Article  PubMed  Google Scholar 

  15. Ramagopalan, S. V. et al. HLA-DRB1 and month of birth in multiple sclerosis. Neurology 73, 2107–2111 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Orton, S. M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 5, 932–936 (2006).

    Article  PubMed  Google Scholar 

  17. Kurtzke, J. F. Multiple sclerosis in time and space—geographic clues to cause. J. Neurovirol. 6 (Suppl. 2), S134–S140 (2000).

    PubMed  Google Scholar 

  18. Pugliatti, M. et al. Evidence of early childhood as the susceptibility period in multiple sclerosis: space–time cluster analysis in a Sardinian population. Am. J. Epidemiol. 164, 326–333 (2006).

    Article  PubMed  Google Scholar 

  19. Oksenberg, J. R., Baranzini, S. E., Sawcer, S. & Hauser, S. L. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat. Rev. Genet. 9, 516–526 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Mackay, R. P. Familial occurrence of multiple sclerosis and its implications. Arch. Neurol. Psychiatry 64, 155–157 (1950).

    CAS  PubMed  Google Scholar 

  21. Schapira, K., Poskanzer, D. C. & Miller, H. Familial and conjugal multiple sclerosis. Brain 86, 315–332 (1963).

    Article  CAS  PubMed  Google Scholar 

  22. Doolittle, T. H. et al. Multiple sclerosis sibling pairs: clustered onset and familial predisposition. Neurology 40, 1546–1552 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Robertson, N. P. et al. Age-adjusted recurrence risks for relatives of patients with multiple sclerosis. Brain 119, 449–455 (1996).

    Article  PubMed  Google Scholar 

  24. Risch, N. Linkage strategies for genetically complex traits. I. Multilocus models. Am. J. Hum. Genet. 46, 222–228 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadovnick, A. D. Familial recurrence risks and inheritance of multiple sclerosis. Curr. Opin. Neurol. Neurosurg. 6, 189–194 (1993).

    CAS  PubMed  Google Scholar 

  26. Guo, S. W. Inflation of sibling recurrence-risk ratio, due to ascertainment bias and/or overreporting. Am. J. Hum. Genet. 63, 252–258 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemminki, K., Li, X., Sundquist, J., Hillert, J. & Sundquist, K. Risk for multiple sclerosis in relatives and spouses of patients diagnosed with autoimmune and related conditions. Neurogenetics 10, 5–11 (2009).

    Article  PubMed  Google Scholar 

  28. Sawcer, S., Ban, M., Wason, J. & Dudbridge, F. What role for genetics in the prediction of multiple sclerosis? Ann. Neurol. 67, 3–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carton, H. et al. Risks of multiple sclerosis in relatives of patients in Flanders, Belgium. J. Neurol. Neurosurg. Psychiatry 62, 329–333 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ebers, G. C., Sadovnick, A. D. & Risch, N. J. A genetic basis for familial aggregation in multiple sclerosis. Nature 377, 150–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Sadovnick, A. D., Ebers, G. C., Dyment, D. A. & Risch, N. J. Evidence for genetic basis of multiple sclerosis. The Canadian Collaborative Study Group. Lancet 347, 1728–1730 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Ebers, G. C., Yee, I. M., Sadovnick, A. D. & Duquette, P. Conjugal multiple sclerosis: population-based prevalence and recurrence risks in offspring. Ann. Neurol. 48, 927–931 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Brassat, D. et al. Familial factors influence disability in MS multiplex families. Neurology 52, 1632–1636 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Barcellos, L. F. et al. Genetic basis for clinical expression in multiple sclerosis. Brain 125, 150–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hensiek, A. E. et al. Familial effects on the clinical course of multiple sclerosis. Neurology 68, 376–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. DeLuca, G. C. et al. An extremes of outcome strategy provides evidence that multiple sclerosis severity is determined by alleles at the HLA-DRB1 locus. Proc. Natl Acad. Sci. USA 104, 20896–20901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willer, C. J., Dyment, D. A., Risch, N. J., Sadovnick, A. D. & Ebers, G. C. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl Acad. Sci. USA 100, 12877–12882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansen, T. et al. Concordance for multiple sclerosis in Danish twins: an update of a nationwide study. Mult. Scler. 11, 504–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Hawkes, C. H. & Macgregor, A. J. Twin studies and the heritability of MS: a conclusion. Mult. Scler. 15, 661–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. McElroy, J. P. & Oksenberg, J. R. Multiple sclerosis genetics. Curr. Top. Microbiol. Immunol. 318, 45–72 (2008).

    CAS  PubMed  Google Scholar 

  41. Booth, D. R. et al. Gene expression and genotyping studies implicate the interleukin 7 receptor in the pathogenesis of primary progressive multiple sclerosis. J. Mol. Med. 83, 822–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lundmark, F. et al. Variation in interleukin 7 receptor α chain (IL7R) influences risk of multiple sclerosis. Nat. Genet. 39, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Gregory, S. G. et al. Interleukin 7 receptor α chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat. Genet. 39, 1083–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Sawcer, S. et al. A high-density screen for linkage in multiple sclerosis. Am. J. Hum. Genet. 77, 454–467 (2005).

    Article  PubMed  Google Scholar 

  45. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. International Multiple Sclerosis Genetics Consortium. Risk alleles for multiple sclerosis identified by a genome-wide study. N. Engl. J. Med. 357, 851–862 (2007).

  47. Comabella, M. et al. Identification of a novel risk locus for multiple sclerosis at 13q31.3 by a pooled genome-wide scan of 500,000 single nucleotide polymorphisms. PLoS One 3, e3490 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Baranzini, S. E. et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum. Mol. Genet. 18, 767–778 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41, 824–828 (2009).

  50. Jakkula, E. et al. Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. Am. J. Hum. Genet. 86, 285–291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanna, S. et al. Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis. Nat. Genet. 42, 495–497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. International Multiple Sclerosis Genetics Consortium (IMSGC). Refining genetic associations in multiple sclerosis. Lancet Neurol. 7, 567–569 (2008).

  53. Ban, M. et al. Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. Eur. J. Hum. Genet. 17, 1309–1313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D'Netto, M. J. et al. Risk alleles for multiple sclerosis in multiplex families. Neurology 72, 1984–1988 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Hoppenbrouwers, I. A. et al. Replication of CD58 and CLEC16A as genome-wide significant risk genes for multiple sclerosis. J. Hum. Genet. 54, 676–680 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. International Multiple Sclerosis Genetics Consortium (IMSGC). The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun. 10, 11–14 (2009).

  57. International Multiple Sclerosis Genetics Consortium (IMSGC). Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Hum. Mol. Genet. 19, 953–962 (2009).

  58. De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41, 776–782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Jager, P. L. et al. The role of the CD58 locus in multiple sclerosis. Proc. Natl Acad. Sci USA 106, 5264–5269 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maier, L. M. et al. Soluble IL-2RA levels in multiple sclerosis subjects and the effect of soluble IL-2RA on immune responses. J. Immunol. 182, 1541–1547 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Baranzini, S. E. et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum. Mol. Genet. 18, 2078–2090 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baranzini, S. E. The genetics of autoimmune diseases: a networked perspective. Curr. Opin. Immunol. 21, 596–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Hafler, J. P. et al. CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun. 10, 5–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Sirota, M., Schaub, M. A., Batzoglou, S., Robinson, W. H. & Butte, A. J. Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet. 5, e1000792 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Maier, L. M. & Hafler, D. A. The developing mosaic of autoimmune disease risk. Nat. Genet. 40, 131–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Dendrou, C. A. et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat. Genet. 41, 1011–1015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maier, L. M. et al. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet. 5, e1000322 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Goh, K. I. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–8690 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oti, M. & Brunner, H. G. The modular nature of genetic diseases. Clin. Genet. 71, 1–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Oti, M., Huynen, M. A. & Brunner, H. G. The biological coherence of human phenome databases. Am. J. Hum. Genet. 85, 801–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loscalzo, J., Kohane, I. & Barabasi, A. L. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol. 3, 124 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wain, L. V., Armour, J. A. & Tobin, M. D. Genomic copy number variation, human health, and disease. Lancet 374, 340–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schaschl, H., Aitman, T. J. & Vyse, T. J. Copy number variation in the human genome and its implication in autoimmunity. Clin. Exp. Immunol. 156, 12–16 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. International Multiple Sclerosis Genetics Consortium (IMSGC). Evidence for polygenic susceptibility to multiple sclerosis. The shape of things to come. Am. J. Hum. Genet. 86, 621–625 (2010).

  77. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marchini, J., Donnelly, P. & Cardon, L. R. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet. 37, 413–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Lesnick, T. G. et al. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 3, e98 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Torkamani, A., Topol, E. J. & Schork, N. J. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics 92, 265–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Corvol, J. C. et al. Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proc. Natl Acad. Sci. USA 105, 11839–11844 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Jager, P. L. et al. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol. 8, 1111–1119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D. B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Baranzini, S. E. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464, 1351–1356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lupski, J. R. et al. Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med. 362, 1181–1191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fugger, L., Friese, M. A. & Bell, J. I. From genes to function: the next challenge to understanding multiple sclerosis. Nat. Rev. Immunol. 9, 408–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann. Neurol. 61, 504–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. von Essen, M. R. et al. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat. Immunol. 11, 344–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Correale, J., Ysrraelit, M. C. & Gaitan, M. I. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain 132, 1146–1160 (2009).

    Article  PubMed  Google Scholar 

  93. Smolders, J. et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One 4, e6635 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ramagopalan, S. V. et al. Expression of the multiple sclerosis-associated MHC class II allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 5, e1000369 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Becklund, B. R., Severson, K. S., Vang, S. V. & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA 107, 6418–6423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    Article  PubMed  Google Scholar 

  97. Lipton, H. L., Liang, Z., Hertzler, S. & Son, K. N. A specific viral cause of multiple sclerosis: one virus, one disease. Ann. Neurol. 61, 514–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Ascherio, A. et al. Epstein–Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Cepok, S. et al. Identification of Epstein–Barr virus proteins as putative targets of the immune response in multiple sclerosis. J. Clin. Invest. 115, 1352–1360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Serafini, B. et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204, 2899–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Salvetti, M., Giovannoni, G. & Aloisi, F. Epstein–Barr virus and multiple sclerosis. Curr. Opin. Neurol. 22, 201–206 (2009).

    Article  PubMed  Google Scholar 

  102. Riise, T., Nortvedt, M. W. & Ascherio, A. Smoking is a risk factor for multiple sclerosis. Neurology 61, 1122–1124 (2003).

    Article  PubMed  Google Scholar 

  103. Hedstrom, A. K., Baarnhielm, M., Olsson, T. & Alfredsson, L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 73, 696–701 (2009).

    Article  PubMed  Google Scholar 

  104. Oksenberg, J. R. et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 74, 160–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Barcellos, L. F. et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am. J. Hum. Genet. 72, 710–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dyment, D. A. et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum. Mol. Genet. 14, 2019–2026 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Gregersen, J. W. et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature 443, 574–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Caillier, S. J. et al. Uncoupling the roles of HLA-DRB1 and HLA–DRB5 genes in multiple sclerosis. J. Immunol. 181, 5473–5480 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Brynedal, B. et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS One 2, e664 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Yeo, T. W. et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann. Neurol. 61, 228–236 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Friese, M. A. et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat. Med. 14, 1227–1235 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Lorentzen, A. R. et al. Killer immunoglobulin-like receptor ligand HLA-Bw4 protects against multiple sclerosis. Ann. Neurol. 65, 658–666 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Rioux, J. D. et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc. Natl Acad. Sci. USA 106, 18680–18685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Manolio, T. A. Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI's office of population genomics. Pharmacogenomics 10, 235–241 (2009).

    Article  PubMed  Google Scholar 

  116. Ioannidis, J. P., Thomas, G. & Daly, M. J. Validating, augmenting and refining genome-wide association signals. Nat. Rev. Genet. 10, 318–329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. A Catalog of Published Genome-Wide Association Studies genome.gov [online], (2010).

  119. Sadovnick, A. D. et al. Age of onset in concordant twins and other relative pairs with multiple sclerosis. Am. J. Epidemiol. 170, 289–296 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Byun, E. et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch. Neurol. 65, 337–344 (2008).

    Article  PubMed  Google Scholar 

  121. Comabella, M. et al. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch. Neurol. 66, 972–978 (2009).

    Article  PubMed  Google Scholar 

  122. Okuda, D. T. et al. Genotype–phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain 132, 250–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pappas, D. J. & Oksenberg, J. R. Multiple sclerosis pharmacogenomics: maximizing efficacy of therapy. Neurology 74 (Suppl. 1), S62–S69 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Wu, J. S. et al. HLA-DRB1 allele heterogeneity influences multiple sclerosis severity as well as risk in Western Australia. J. Neuroimmunol. 219, 109–113 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge R. Oksenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oksenberg, J., Baranzini, S. Multiple sclerosis genetics—is the glass half full, or half empty?. Nat Rev Neurol 6, 429–437 (2010). https://doi.org/10.1038/nrneurol.2010.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing