Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal involvement in tuberous sclerosis complex and von Hippel–Lindau disease: shared disease mechanisms?

Abstract

Tuberous sclerosis complex and von Hippel–Lindau disease are distinct autosomal dominant tumor suppressor syndromes that can exhibit similar renal phenotypes and seem to share some signaling pathway components. Similarities exist in the current clinical management of, and the newly identified potential therapeutic approaches for, these conditions. This Review summarizes the pathophysiologic and therapeutic overlap between tuberous sclerosis complex and von Hippel–Lindau disease and highlights the results of recent drug trials in these settings.

Key Points

  • Tuberous sclerosis complex (TSC) and von Hippel–Lindau (VHL) disease are distinct tumor suppressor syndromes caused by mutations in the TSC1 and TSC2 genes and in the VHL gene, respectively

  • TSC and VHL disease are both associated with the development of cystic renal disease and vascular tumors, including renal cell carcinoma

  • The similarities between TSC and VHL disease are due in part to overlap in the pathways and functions of the affected genes

  • Physical examinations, imaging studies and laboratory investigations are the cornerstones of follow-up in patients with renal complications of TSC or VHL disease

  • Increased knowledge of the signaling pathways involved in TSC and VHL disease has prompted the initiation of trials to test novel pharmacological interventions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of cell growth and proliferation by TSC and VHL genes.
Figure 2: Loss of the tumor suppressor pVHL has a central role in the pathogenesis of renal cell carcinoma via multiple HIF-dependent and HIF-independent signaling pathways.
Figure 3: Rapid growth of renal angiomyolipomas in a child with tuberous sclerosis complex.
Figure 4: PET and CT scans of a patient with type 2 von Hippel–Lindau disease.

Similar content being viewed by others

References

  1. van Slegtenhorst M et al. (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805–808

    Article  CAS  PubMed  Google Scholar 

  2. European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75: 1305–1315

  3. Latif F et al. (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260: 1317–1320

    Article  CAS  PubMed  Google Scholar 

  4. O'Callaghan FJ et al. (1998) Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet 351: 1490

    Article  CAS  PubMed  Google Scholar 

  5. Dabora SL et al. (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68: 64–80

    Article  CAS  PubMed  Google Scholar 

  6. Jones AC et al. (1999) Comprehensive mutation analysis of TSC1 and TSC2–and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64: 1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sancak O et al. (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13: 731–741

    Article  CAS  PubMed  Google Scholar 

  8. Schillinger F and Montagnac R (1996) Chronic renal failure and its treatment in tuberous sclerosis. Nephrol Dial Transplant 11: 481–485

    Article  CAS  PubMed  Google Scholar 

  9. Clarke A et al. (1999) End-stage renal failure in adults with the tuberous sclerosis complex. Nephrol Dial Transplant 14: 988–991

    Article  CAS  PubMed  Google Scholar 

  10. Shepherd CW et al. (1991) Causes of death in patients with tuberous sclerosis. Mayo Clin Proc 66: 792–796

    Article  CAS  PubMed  Google Scholar 

  11. El-Hashemite N et al. (2003) Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 63: 5173–5177

    CAS  PubMed  Google Scholar 

  12. Karbowniczek M et al. (2003) Renal angiomyolipomas from patients with sporadic lymphangiomyomatosis contain both neoplastic and non-neoplastic vascular structures. Am J Pathol 162: 491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong AL et al. (1981) Renal angiomyolipoma: a review of the literature and a report of 4 cases. Br J Urol 53: 406–411

    Article  CAS  PubMed  Google Scholar 

  14. Obuz F et al. (2000) Various radiological appearances of angiomyolipomas in the same kidney. Eur Radiol 10: 897–899

    Article  CAS  PubMed  Google Scholar 

  15. Lin CN et al. (1994) Renal angiomyolipoma with a prominent angiomatous component and extramedullary hematopoiesis: a case report. Chin Med J 53: 185–187

    CAS  Google Scholar 

  16. Tweeddale DN et al. (1955) Angiolipoleiomyoma of the kidney: report of a case with observations on histogenesis. Cancer 8: 764–770

    Article  CAS  PubMed  Google Scholar 

  17. Mai KT et al. (1996) Epithelioid cell variant of renal angiomyolipoma. Histopathology 28: 277–280

    Article  CAS  PubMed  Google Scholar 

  18. Eble JN et al. (1997) Epithelioid angiomyolipoma of the kidney: a report of five cases with a prominent and diagnostically confusing epithelioid smooth muscle component. Am J Surg Pathol 21: 1123–1130

    Article  CAS  PubMed  Google Scholar 

  19. Farrow GM et al. (1968) Renal angiomyolipoma: a clinicopathologic study of 32 cases. Cancer 22: 564–570

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein J and Robbins TO (1991) Renal involvement in tuberous sclerosis. Ann NY Acad Sci 615: 36–49

    Article  CAS  PubMed  Google Scholar 

  21. Rakowski SK et al. (2006) Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int 70: 1777–1782

    Article  CAS  PubMed  Google Scholar 

  22. Ewalt DH et al. (1998) Renal lesion growth in children with tuberous sclerosis complex. J Urol 160: 141–145

    Article  CAS  PubMed  Google Scholar 

  23. Lemaitre L et al. (1995) Renal angiomyolipoma: growth followed up with CT and/or US. Radiology 197: 598–602

    Article  CAS  PubMed  Google Scholar 

  24. Steiner MS et al. (1993) The natural history of renal angiomyolipoma. J Urol 150: 1782–1786

    Article  CAS  PubMed  Google Scholar 

  25. Kennelly MJ et al. (1994) Outcome analysis of 42 cases of renal angiomyolipoma. J Urol 152: 1988–1991

    Article  CAS  PubMed  Google Scholar 

  26. Henske EP et al. (1998) Frequent progesterone receptor immunoreactivity in tuberous sclerosis-associated renal angiomyolipomas. Mod Pathol 11: 665–668

    CAS  PubMed  Google Scholar 

  27. Logginidou H et al. (2000) Frequent estrogen and progesterone receptor immunoreactivity in renal angiomyolipomas from women with pulmonary lymphangioleiomyomatosis. Chest 117: 25–30

    Article  CAS  PubMed  Google Scholar 

  28. Chesa Ponce N et al. (1995) Wunderlich's syndrome as the first manifestation of a renal angiomyolipoma [Spanish]. Arch Esp Urol 48: 305–308

    CAS  PubMed  Google Scholar 

  29. Mouded IM et al. (1978) Symptomatic renal angiomyolipoma: report of 8 cases, 2 with spontaneous rupture. J Urol 119: 684–688

    Article  CAS  PubMed  Google Scholar 

  30. Kessler OJ et al. (1998) Management of renal angiomyolipoma: analysis of 15 cases. Eur Urol 33: 572–575

    Article  CAS  PubMed  Google Scholar 

  31. Zagoria RJ et al. (1991) Spontaneous perinephric hemorrhage: imaging and management. J Urol 145: 468–471

    Article  CAS  PubMed  Google Scholar 

  32. van Baal JG et al. (1994) The evolution of renal angiomyolipomas in patients with tuberous sclerosis. J Urol 152: 35–38

    Article  CAS  PubMed  Google Scholar 

  33. Koike H et al. (1994) Management of renal angiomyolipoma: a report of 14 cases and review of the literature: is nonsurgical treatment adequate for this tumor? Eur Urol 25: 183–188

    Article  CAS  PubMed  Google Scholar 

  34. Dickinson M et al. (1998) Renal angiomyolipoma: optimal treatment based on size and symptoms. Clin Nephrol 49: 281–286

    CAS  PubMed  Google Scholar 

  35. Ou YC et al. (1991) Renal angiomyolipoma: experience of 23 patients. Chin Med J 48: 217–223

    CAS  Google Scholar 

  36. Adler J et al. (1984) “Macro” aneurysm in renal angiomyolipoma: two cases, with therapeutic embolization in one patient. Urol Radiol 6: 201–203

    Article  CAS  PubMed  Google Scholar 

  37. Bissler JJ et al. (2002) Reduction of postembolization syndrome after ablation of renal angiomyolipoma. Am J Kidney Dis 39: 966–971

    Article  PubMed  Google Scholar 

  38. Yamakado K et al. (2002) Renal angiomyolipoma: relationships between tumor size, aneurysm formation, and rupture. Radiology 225: 78–82

    Article  PubMed  Google Scholar 

  39. Pode D et al. (1985) Diagnosis and management of renal angiomyolipoma. Urology 25: 461–467

    Article  CAS  PubMed  Google Scholar 

  40. Eble JN (1998) Angiomyolipoma of kidney. Semin Diagn Pathol 15: 21–40

    CAS  PubMed  Google Scholar 

  41. Bjornsson J et al. (1996) Tuberous sclerosis-associated renal cell carcinoma: clinical, pathological, and genetic features. Am J Pathol 149: 1201–1208

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hardman JA et al. (1993) Recurrent renal angiomyolipoma associated with renal carcinoma in a patient with tuberous sclerosis. Br J Urol 72: 983–984

    Article  CAS  PubMed  Google Scholar 

  43. Martignoni G et al. (2003) Renal pathology in the tuberous sclerosis complex. Pathology 35: 505–512

    Article  PubMed  Google Scholar 

  44. Ferry JA et al. (1991) Renal angiomyolipoma with sarcomatous transformation and pulmonary metastases. Am J Surg Pathol 15: 1083–1088

    Article  CAS  PubMed  Google Scholar 

  45. Lowe BA et al. (1992) Malignant transformation of angiomyolipoma. J Urol 147: 1356–1358

    Article  CAS  PubMed  Google Scholar 

  46. Folpe AL et al. (2005) Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol 29: 1558–1575

    Article  PubMed  Google Scholar 

  47. Jimenez RE et al. (2001) Concurrent angiomyolipoma and renal cell neoplasia: a study of 36 cases. Mod Pathol 14: 157–163

    Article  CAS  PubMed  Google Scholar 

  48. Amin MB et al. (1997) Renal oncocytoma: a reappraisal of morphologic features with clinicopathologic findings in 80 cases. Am J Surg Pathol 21: 1–12

    Article  CAS  PubMed  Google Scholar 

  49. Eble JN and Hull MT (1984) Morphologic features of renal oncocytoma: a light and electron microscopic study. Hum Pathol 15: 1054–1061

    Article  CAS  PubMed  Google Scholar 

  50. Zerban H et al. (1987) Renal oncocytoma: origin from the collecting duct. Virchows Arch B Cell Pathol Incl Mol Pathol 52: 375–387

    Article  CAS  PubMed  Google Scholar 

  51. Siracusano S et al. (1998) Rare association of renal angiomyolipoma and oncocytoma. Urology 51: 837–839

    Article  CAS  PubMed  Google Scholar 

  52. Saito K et al. (2002) Malignant clear cell “sugar” tumor of the kidney: clear cell variant of epithelioid angiomyolipoma. J Urol 168: 2533–2534

    Article  PubMed  Google Scholar 

  53. Pea M et al. (1998) Apparent renal cell carcinomas in tuberous sclerosis are heterogeneous: the identification of malignant epithelioid angiomyolipoma. Am J Surg Pathol 22: 180–187

    Article  CAS  PubMed  Google Scholar 

  54. Bonetti F et al. (1991) False-positive immunostaining of normal epithelia and carcinomas with ascites fluid preparations of antimelanoma monoclonal antibody HMB45. Am J Clin Pathol 95: 454–459

    Article  CAS  PubMed  Google Scholar 

  55. Al-Saleem T et al. (1998) Malignant tumors of the kidney, brain, and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer 83: 2208–2216

    Article  CAS  PubMed  Google Scholar 

  56. Robertson FM et al. (1996) Renal cell carcinoma in association with tuberous sclerosis in children. J Pediatr Surg 31: 729–730

    Article  CAS  PubMed  Google Scholar 

  57. Breysem L et al. (2002) Tuberous sclerosis with cystic renal disease and multifocal renal cell carcinoma in a baby girl. Pediatr Radiol 32: 677–680

    Article  PubMed  Google Scholar 

  58. Tello R et al. (1998) Meta analysis of the relationship between tuberous sclerosis complex and renal cell carcinoma. Eur J Radiol 27: 131–138

    Article  CAS  PubMed  Google Scholar 

  59. Argani P and Ladanyi M (2005) Translocation carcinomas of the kidney. Clin Lab Med 25: 363–378

    Article  PubMed  Google Scholar 

  60. Bernstein J and Meyer R (1967) Parenchymal maldevelopment of the kidney. In Brennemann-Kelley Practice of Pediatrics, Vol 3, 1–30 (Ed. KeHey V) New York: Harper

    Google Scholar 

  61. Potter E (1952) Pathology of the Fetus and the Newborn. Chicago: Year Book Medical Publishers

    Google Scholar 

  62. Ferrus A and Garcia-Bellido A (1976) Morphogenetic mutants detected in mitotic recombination clones. Nature 260: 425–426

    Article  CAS  PubMed  Google Scholar 

  63. Brook-Carter PT et al. (1994) Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease—a contiguous gene syndrome. Nat Genet 8: 328–332

    Article  CAS  PubMed  Google Scholar 

  64. Sampson JR and Harris PC (1994) The molecular genetics of tuberous sclerosis. Hum Mol Genet 3: 1477–1480

    Article  CAS  PubMed  Google Scholar 

  65. Patel V et al. (2008) Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 17: 1578–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gullerova M and Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132: 983–995

    Article  CAS  PubMed  Google Scholar 

  67. Martignoni G et al. (2002) Renal disease in adults with TSC2/PKD1 contiguous gene syndrome. Am J Surg Pathol 26: 198–205

    Article  PubMed  Google Scholar 

  68. Ozcan U et al. (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29: 541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang J et al. (2008) The TSC1–TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28: 4104–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma L et al. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193

    Article  CAS  PubMed  Google Scholar 

  71. Freilinger A et al. (2008) Ras mediates cell survival by regulating tuberin. Oncogene 27: 2072–2083

    Article  CAS  PubMed  Google Scholar 

  72. Lee DF et al. (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130: 440–455

    Article  CAS  PubMed  Google Scholar 

  73. Kunnimalaiyaan M et al. (2007) Inactivation of glycogen synthase kinase-3beta, a downstream target of the raf-1 pathway, is associated with growth suppression in medullary thyroid cancer cells. Mol Cancer Ther 6: 1151–1158

    Article  CAS  PubMed  Google Scholar 

  74. Inoki K et al. (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126: 955–968

    Article  CAS  PubMed  Google Scholar 

  75. Tapon N et al. (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105: 345–355

    Article  CAS  PubMed  Google Scholar 

  76. Rosner M and Hengstschlager M (2004) Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem 279: 48707–48715

    Article  CAS  PubMed  Google Scholar 

  77. Rosner M et al. (2007) p27Kip1 localization depends on the tumor suppressor protein tuberin. Hum Mol Genet 16: 1541–1556

    Article  CAS  PubMed  Google Scholar 

  78. Maher ER et al. (1990) Mapping of von Hippel–Lindau disease to chromosome 3p confirmed by genetic linkage analysis. J Neurol Sci 100: 27–30

    Article  CAS  PubMed  Google Scholar 

  79. Richards FM et al. (1995) Molecular analysis of de novo germline mutations in the von Hippel–Lindau disease gene. Hum Mol Genet 4: 2139–2143

    Article  CAS  PubMed  Google Scholar 

  80. Maher ER (2004) Von Hippel–Lindau disease. Curr Mol Med 4: 833–842

    Article  CAS  PubMed  Google Scholar 

  81. Choyke PL et al. (1995) von Hippel–Lindau disease: genetic, clinical, and imaging features. Radiology 194: 629–642

    Article  CAS  PubMed  Google Scholar 

  82. Clifford SC et al. (2001) Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum Mol Genet 10: 1029–1038

    Article  CAS  PubMed  Google Scholar 

  83. Binkovitz LA et al. (1990) Islet cell tumors in von Hippel–Lindau disease: increased prevalence and relationship to the multiple endocrine neoplasias. AJR Am J Roentgenol 155: 501–505

    Article  CAS  PubMed  Google Scholar 

  84. Hough DM et al. (1994) Pancreatic lesions in von Hippel–Lindau disease: prevalence, clinical significance, and CT findings. AJR Am J Roentgenol 162: 1091–1094

    Article  CAS  PubMed  Google Scholar 

  85. Arao T et al. (2002) A case of von Hippel–Lindau disease with bilateral pheochromocytoma, renal cell carcinoma, pelvic tumor, spinal hemangioblastoma and primary hyperparathyroidism. Endocr J 49: 181–188

    Article  PubMed  Google Scholar 

  86. Browne G et al. (1997) Von Hippel–Lindau disease: an important differential diagnosis of polycystic kidney disease. Nephrol Dial Transplant 12: 1132–1136

    Article  CAS  PubMed  Google Scholar 

  87. Chatha RK et al. (2001) Von Hippel–Lindau disease masquerading as autosomal dominant polycystic kidney disease. Am J Kidney Dis 37: 852–858

    Article  CAS  PubMed  Google Scholar 

  88. Mandriota SJ et al. (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1: 459–468

    Article  CAS  PubMed  Google Scholar 

  89. Haase VH et al. (2001) Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc Natl Acad Sci USA 98: 1583–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma W et al. (2003) Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res 63: 5320–5328

    CAS  PubMed  Google Scholar 

  91. Rankin EB et al. (2006) Renal cyst development in mice with conditional inactivation of the von Hippel–Lindau tumor suppressor. Cancer Res 66: 2576–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jemal A et al. (2006) Cancer statistics, 2006. CA Cancer J Clin 56: 106–130

    Article  PubMed  Google Scholar 

  93. Czyzyk-Krzeska MF and Meller J (2004) von Hippel–Lindau tumor suppressor: not only HIF's executioner. Trends Mol Med 10: 146–149

    Article  CAS  PubMed  Google Scholar 

  94. Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74: 115–128

    Article  CAS  PubMed  Google Scholar 

  95. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2: 673–682

    Article  CAS  PubMed  Google Scholar 

  96. Gunaratnam L et al. (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem 278: 44966–44974

    Article  CAS  PubMed  Google Scholar 

  97. Smith K et al. (2005) Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL−/− renal cancer. Cancer Res 65: 5221–5230

    Article  CAS  PubMed  Google Scholar 

  98. An J and Rettig MB (2005) Mechanism of von Hippel–Lindau protein-mediated suppression of nuclear factor kappa B activity. Mol Cell Biol 25: 7546–7556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qi H and Ohh M (2003) The von Hippel–Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res 63: 7076–7080

    CAS  PubMed  Google Scholar 

  100. Jermann M et al. (2006) A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma. Cancer Chemother Pharmacol 57: 533–539

    Article  CAS  PubMed  Google Scholar 

  101. Perera AD et al. (2000) Requirement for the von Hippel–Lindau tumor suppressor gene for functional epidermal growth factor receptor blockade by monoclonal antibody C225 in renal cell carcinoma. Clin Cancer Res 6: 1518–1523

    CAS  PubMed  Google Scholar 

  102. Dawson NA et al. (2004) A phase II trial of gefitinib (Iressa, ZD1839) in stage IV and recurrent renal cell carcinoma. Clin Cancer Res 10: 7812–7819

    Article  CAS  PubMed  Google Scholar 

  103. Nishimura Y et al. (2008) Evidence for efficient phosphorylation of EGFR and rapid endocytosis of phosphorylated EGFR via the early/late endocytic pathway in a gefitinib-sensitive non-small cell lung cancer cell line. Mol Cancer 7: 42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Staller P et al. (2003) Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425: 307–311

    Article  CAS  PubMed  Google Scholar 

  105. Struckmann K et al. (2008) pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol 214: 464–471

    Article  CAS  PubMed  Google Scholar 

  106. Kuznetsova AV et al. (2003) von Hippel–Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci USA 100: 2706–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mikhaylova O et al. (2008) The von Hippel–Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol 28: 2701–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Galban S et al. (2003) Influence of the RNA-binding protein HuR in pVHL-regulated p53 expression in renal carcinoma cells. Mol Cell Biol 23: 7083–7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Roe JS et al. (2006) p53 stabilization and transactivation by a von Hippel–Lindau protein. Mol Cell 22: 395–405

    Article  CAS  PubMed  Google Scholar 

  110. Ohh M et al. (1998) The von Hippel–Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1: 959–968

    Article  CAS  PubMed  Google Scholar 

  111. Kurban G et al. (2006) Characterization of a von Hippel–Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. Cancer Res 66: 1313–1319

    Article  CAS  PubMed  Google Scholar 

  112. Hergovich A et al. (2003) Regulation of microtubule stability by the von Hippel–Lindau tumour suppressor protein pVHL. Nat Cell Biol 5: 64–70

    Article  CAS  PubMed  Google Scholar 

  113. Schermer B et al. (2006) The von Hippel–Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol 175: 547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lutz MS and Burk RD (2006) Primary cilium formation requires von Hippel–Lindau gene function in renal-derived cells. Cancer Res 66: 6903–6907

    Article  CAS  PubMed  Google Scholar 

  115. Kuehn EW et al. (2007) von Hippel–Lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res 67: 4537–4540

    Article  CAS  PubMed  Google Scholar 

  116. Kamada M et al. (2001) von Hippel–Lindau protein promotes the assembly of actin and vinculin and inhibits cell motility. Cancer Res 61: 4184–4189

    CAS  PubMed  Google Scholar 

  117. Esteban MA et al. (2006) Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66: 3567–3575

    Article  CAS  PubMed  Google Scholar 

  118. Krishnamachary B et al. (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel–Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66: 2725–2731

    Article  CAS  PubMed  Google Scholar 

  119. Evans AJ et al. (2007) VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol 27: 157–169

    Article  CAS  PubMed  Google Scholar 

  120. Peruzzi B et al. (2006) The von Hippel–Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 103: 14531–14536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nakaigawa N et al. (2006) Inactivation of von Hippel–Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma. Cancer Res 66: 3699–3705

    Article  CAS  PubMed  Google Scholar 

  122. Koochekpour S et al. (1999) The von Hippel–Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 19: 5902–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wizigmann-Voos S et al. (1995) Up-regulation of vascular endothelial growth factor and its receptors in von Hippel–Lindau disease-associated and sporadic hemangioblastomas. Cancer Res 55: 1358–1364

    CAS  PubMed  Google Scholar 

  124. Brugarolas J and Kaelin WG Jr (2004) Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6: 7–10

    Article  CAS  PubMed  Google Scholar 

  125. Inoki K et al. (2005) Dysregulation of the TSC–mTOR pathway in human disease. Nat Genet 37: 19–24

    Article  CAS  PubMed  Google Scholar 

  126. Brugarolas JB et al. (2003) TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4: 147–158

    Article  CAS  PubMed  Google Scholar 

  127. Yoder BK (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18: 1381–1388

    Article  CAS  PubMed  Google Scholar 

  128. Praetorius HA and Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12: 517–520

    Article  PubMed  Google Scholar 

  129. Guay-Woodford LM (2003) Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 285: F1034–F1049

    Article  CAS  PubMed  Google Scholar 

  130. Hou X et al. (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 109: 533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Otto EA et al. (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34: 413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yoder BK et al. (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13: 2508–2516

    Article  CAS  PubMed  Google Scholar 

  133. Menezes LF et al. (2004) Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int 66: 1345–1355

    Article  CAS  PubMed  Google Scholar 

  134. Romio L et al. (2004) OFD1 is a centrosomal/basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis. J Am Soc Nephrol 15: 2556–2568

    Article  CAS  PubMed  Google Scholar 

  135. Hildebrandt F and Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6: 928–940

    Article  CAS  PubMed  Google Scholar 

  136. Astrinidis A et al. (2006) Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner. Hum Mol Genet 15: 287–297

    Article  CAS  PubMed  Google Scholar 

  137. Shillingford JM et al. (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 103: 5466–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lolkema MP et al. (2004) The von Hippel–Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery. Exp Cell Res 301: 139–146

    Article  CAS  PubMed  Google Scholar 

  139. Esteban MA et al. (2006) Formation of primary cilia in the renal epithelium is regulated by the von Hippel–Lindau tumor suppressor protein. J Am Soc Nephrol 17: 1801–1806

    Article  CAS  PubMed  Google Scholar 

  140. Thoma CR et al. (2007) The VHL tumor suppressor: riding tandem with GSK3beta in primary cilium maintenance. Cell Cycle 6: 1809–1813

    Article  CAS  PubMed  Google Scholar 

  141. Frew IJ et al. (2008) pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J 27: 1747–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kugoh H et al. (2002) Retention of membrane-localized beta-catenin in cells lacking functional polycystin-1 and tuberin. Mol Carcinog 33: 131–136

    Article  CAS  PubMed  Google Scholar 

  143. Huan Y and van Adelsberg J (1999) Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104: 1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Serra AL et al. (2007) Clinical proof-of-concept trial to assess the therapeutic effect of sirolimus in patients with autosomal dominant polycystic kidney disease: SUISSE ADPKD study. BMC Nephrol 8: 13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Costa LJ and Drabkin HA (2007) Renal cell carcinoma: new developments in molecular biology and potential for targeted therapies. Oncologist 12: 1404–1415

    Article  CAS  PubMed  Google Scholar 

  146. Bissler JJ et al. (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358: 140–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Patel U et al. (2005) Tuberose sclerosis complex: analysis of growth rates aids differentiation of renal cell carcinoma from atypical or minimal-fat-containing angiomyolipoma. Clin Radiol 60: 665–673

    Article  CAS  PubMed  Google Scholar 

  148. Jiang X et al. (2008) The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake. Am J Pathol 172: 1748–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants DK061458 and DoDTS050008 (to JJ Bissler) and NCI CA122346 and DoDPR064135 (to MF Czyzyk-Krzeska) and by the PKD Foundation (to BJ Siroky). The authors thank Jason Steinberg and Bradley Dixon for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J Bissler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siroky, B., Czyzyk-Krzeska, M. & Bissler, J. Renal involvement in tuberous sclerosis complex and von Hippel–Lindau disease: shared disease mechanisms?. Nat Rev Nephrol 5, 143–156 (2009). https://doi.org/10.1038/ncpneph1032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph1032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing