Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Complex-trait genetics: emergence of multivariate strategies

Abstract

Complex traits, including many disease-related traits, are influenced by multiple genes. Bivariate approaches that associate one gene with one trait are yielding to multivariate methods to synthesize the effects of multiple genes, integrate results across independent studies, and aid in the identification of coordinated pathways and interactions between loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Phillips, T. J. et al. Harnessing the mouse to unravel the genetics of human disease. Genes Brain Behav. 1, 14–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Gerlai, R. Gene targeting: technical confounds and potential solutions in behavioral brain research. Behav. Brain Res. 125, 13–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Low, M. J., Kelly, M. A., Rubinstein, M. & Grandy, D. K. Single genes and complex phenotypes. Mol. Psychiatry 3, 373–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Bale, T. L. et al. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have impaired stress response and display sexually dichotomous anxiety-like behavior. J. Neurosci. 22, 193–199 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naveilhan, P., Canals, J. M., Arenas, E. & Ernfors, P. Distinct roles of the Y1 and Y2 receptors on neuropeptide Y – induced sensitization to sedation. J. Neurochem. 78, 1201–1207 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, S. W. et al. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 129, 467–477 (2002).

    CAS  PubMed  Google Scholar 

  7. Hamilton, B. et al. The vibrator mutation causes neurodegeneration via reduced expression of PITPα]: positional complementation cloning and extragenic suppression. Neuron 18, 711–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Phillips, T. J., Hen, R. & Crabbe, J. C. Complications associated with genetic background effects in research using knockout mice. Psychopharmacology 147, 5–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lincoln, S. E., Daly, M. & Lander, E. S. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report 2nd edn (Whitehead institute, MIT, Cambridge, Massachusetts, 1993).

    Google Scholar 

  11. Belknap, J. K. et al. QTL analysis and genomewide mutagenesis in mice: complementary genetic approaches to the dissection of complex traits. Behav. Genet. 31, 5–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Flint, J. & Mott, R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nature Rev. Genet. 2, 437–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Aitman, T. J. et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genet. 21, 76–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Karp, C. L. et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nature Immunol. 1, 221–226 (2000).

    Article  CAS  Google Scholar 

  15. Rozzo, S. J. et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 15, 435–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Nadeau, J. H. & Frankel, W. N. The roads from phenotypic variation to gene discovery: mutagenesis vs QTLs. Nature Genet. 25, 381–384 (2000).

    CAS  PubMed  Google Scholar 

  17. Jiang, C. & Zeng, Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jansen, R. C. Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Basten, C., Weir, B. S. & Zeng, Z.-B. QTL Cartographer [online] (cited 03 May 02) 〈http://statgen.ncsu.edu/qtlcart/cartographer.html〉 (2001).

  20. Nadeau, J. H. Modifer genes in mice and humans. Nature Rev. Genet. 2, 165–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Rozmahel, R. et al. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nature Genet. 12, 274–277 (1996).

    Article  Google Scholar 

  22. Kao, C.-H., Zeng, Z.-B. & Teasdale, R. D. Multiple interval mapping for quantitative trait loci. Genetics 152, 1203–1216 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sen, S. & Churchill, G. A. A statistical framework for quantitative trait mapping. Genetics 159, 371–387 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheverud, J. M. & Routman, E. J. Epistasis and its contribution to genetic variance components. Genetics 139, 1455–1461 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Omholt, S. W., Plahte, E., Oyehaug, L. & Xiang, K. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155, 969–980 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugiyama, F. et al. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 71, 70–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Shimomura, K. et al. Genome-wide epistatic interaction analysis reveals complex determinants of circadian behavior in mice. Genome Res 11, 959–980 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hood, H., Belknap, J. K., Crabbe, J. C. & Buck, K. J. Genome-wide search for epistasis in a complex trait: pentobarbital withdrawal convulsions in mice. Behav. Genet. 31, 93–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Miles, M. F. Microarrays: lost in a storm of data? Nature Rev. Neurosci. 2, 441–443 (2001).

    Article  CAS  Google Scholar 

  30. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quackenbush, J. Computational analysis of microarray data. Nature Rev. Genet. 2, 418–427 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Hill, A. A., Hunter, C. P., Tsung, B. T., Tucker-Kellogg, G. & Brown, E. L. Genomic analysis of gene expression in C. elegans. Science 290, 809–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promotor elements. Nature Genet. 29, 153–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Aldenderfer, M. S. & Blashfield, R. K. Cluster Analysis (Sage Publications, Hollywood, California, 1984).

    Book  Google Scholar 

  35. Kruskal, J. B. & Wish, M. Multidimensional Scaling (Sage Univ. Press, Beverly Hills, California, 1978).

    Book  Google Scholar 

  36. Manly, B. F. J. Multivariate Statistical Methods: a Primer (Chapman & Hall, Bristol, UK, 1986).

  37. Crabbe, J. C., Phillips, T. J., Kosobud, A. & Belknap, J. K. Estimation of genetic correlation: interpretation of experiments using selectively bred and inbred animals. Alcohol Clin. Exp. Res. 14, 141–151 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Metten, P. & Crabbe, J. C. Common genetic determinants of severity of acute withdrawal from ethanol, pentobarbital and diazepam in inbred mice. Behav. Pharmacol. 5, 533–547 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Crabbe, J. C., Gallaher, E. J., Cross, S. J. & Belknap, J. K. Genetic determinants of sensitivity to diazepam in inbred mice. Behav. Neurosci. 112, 668–677 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Lariviere, W. R. et al. Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain (in the press).

  41. Grupe, A. et al. In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Paigen, K. & Eppig, J. T. A mouse phenome project. Mamm. Genome 11, 715–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C. & Flint, J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl Acad. Sci. USA 97, 12649–12654 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Turri, M. G., Datta, S. R., DeFries, J., Henderson, N. D. & Flint, J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr. Biol. 11, 725–734 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Fernández-Teruel, A. et al. A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res. 12, 618–626 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Korol, A. B., Ronin, Y. I., Itskovich, A. M., Peng, J. & Nevo, E. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157, 1789–1803 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shoemaker, J. S., Painter, I. S. & Weir, B. S. Bayesian statistics in genetics. Trends Genet. 15, 354–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollack, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2316 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Bayes, T. An essay towards solving a problem in the doctrine of chances. Phil. Trans. R. Soc. 53, 370–418 (1763).

    Article  Google Scholar 

  50. Edwards, A. W. F. Likelihood (Johns Hopkins Univ. Press, Baltimore, Maryland, 1972).

    Google Scholar 

  51. Wolf, F. M. Meta-analysis: Quantitative Methods for Research Synthesis (Sage Publications, Beverly Hills, California, 1986).

    Book  Google Scholar 

  52. Cooper, H. & Hedges, L. V. The Handbook of Research Synthesis (Russell Sage Foundation, New York, 1994).

    Google Scholar 

  53. Goffinet, B. & Gerber, S. Quantitative trait loci: a meta-analysis. Genetics 155, 463–473 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Allison, D. B. & Heo, M. Meta-Analysis of linkage data under worst-case conditions: a demonstration using the human OB region. Genetics 148, 859–865 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosenthal, R. in The Handbook of Research Synthesis (eds Cooper, H. & Hedges, L. V.) 232–244 (Russell Sage Foundation, New York, 1994).

    Google Scholar 

  56. Becker, B. J. in The Handbook of Research Synthesis (eds Cooper, H. & Hedges, L. V.) 216–230 (Russell Sage Foundation, New York, 1994).

    Google Scholar 

  57. Stangl, D. K. & Berry, D. A. Meta-analysis in Medicine and Health Policy (Marcel Dekker, New York, 2000).

    Book  Google Scholar 

  58. Belknap, J. K. & Atkins, A. L. The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mamm. Genome 12, 893–899 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Metten, P. et al. Reduced ethanol withdrawal severity predicts higher ethanol consumption. Mamm. Genome 9, 983–990 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Crabbe, J. C. et al. Elevated alcohol consumption in null mutant mice lacking 5-HT1B receptors. Nature Genet. 14, 98–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Phillips, T. J., Crabbe, J. C., Metten, P. & Belknap, J. K. Localization of genes affecting alcohol drinking in mice. Alcohol Clin. Exp. Res. 18, 931–941 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Belknap, J. K., Richards, S. P., O'Toole, L. A., Helms, M. L. & Phillips, T. J. Short-term selective breeding as a tool for QTL mapping: alcohol preference drinking in mice. Behav. Genet. 27, 55–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Neumann, P. E. & Seyfried, T. N. Mapping of two genes that influence susceptibility to audiogenic seizures in crosses of C57BL/6J and DBA/2J mice. Behav. Genet. 20, 307–323 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Buck, K. J., Metten, P., Belknap, J. K. & Crabbe, J. C. Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J. Neurosci. 17, 3946–3955 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Crabbe, J. C. Provisional mapping of quantitative trait loci for chronic ethanol withdrawal severity in BXD recombinant inbred mice. J. Pharmacol. Exp. Ther. 286, 263–271 (1998).

    CAS  PubMed  Google Scholar 

  66. Hain, H. S., Crabbe, J. C., Bergeson, S. E. & Belknap, J. K. Cocaine-induced seizure thresholds: quantitative trait loci detection and mapping in two populations derived from the C57BL/6 and DBA/2 mouse strains. J. Pharmacol. Exp. Ther. 293, 180–187 (2000).

    CAS  PubMed  Google Scholar 

  67. McCall, R. D. & Frierson, D. Jr. Evidence that two loci predominantly determine the difference in susceptibility to the high pressure neurologic syndrome type I seizure in mice. Genetics 99, 285–307 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Belknap, J. K. et al. Quantitative trait loci (QTL) applications to substances of abuse: physical dependence studies with nitrous oxide and ethanol in BXD mice. Behav. Genet. 23, 213–222 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Buck, K., Metten, P., Belknap, J. & Crabbe, J. Quantitative trait loci affecting risk for pentobarbital withdrawal map near alcohol withdrawal loci on mouse chromosomes 1, 4, and 11. Mamm. Genome 10, 431–437 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to R. Hen for providing the breeding stocks of 5-HT1B mice. We are also grateful for the technical assistance of S. Burkhart-Kasch and A. Forster. We thank A. Palmer and J. Crabbe for insightful discussions. Our work is supported by grants from the Department of Veterans Affairs, the National Institute on Alcohol Abuse and Alcoholism, and the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara J. Phillips.

Related links

Related links

DATABASES

LocusLink

Brn3a

Brn3b

Brn3c

Clock

CRFR1

CRFR2

Htr1b

Mvb1

Pitpn

Y1 receptor

Y2 receptor

Mouse Phenome Project

129

129S1/SvImJ

A/J

AKR/J

BALB/cByJ

BTBR/N

C3H/HeJ

C57BL/6J

DBA/2J

FVB/NJ

LP/J

NON/Lt

FURTHER INFORMATION

Encyclopedia of Life Sciences

quantitative genetics

Mouse Genome Informatics

Glossary

BAYESIAN APPROACH

A statistical method that allows the use of prior information to evaluate the posterior probabilities of different hypotheses.

BIDIRECTIONAL SELECTIVE BREEDING

A breeding strategy in which two opposite phenotypes (for example, high and low body weight) are identified in a population and selected over multiple generations.

CLUSTER ANALYSIS

An analytical tool for solving classification problems. The object is to sort items into groups such that the degree of association is strong between members of the same cluster and weak between members of different clusters.

CONGENIC STRAIN

A strain that is produced by a breeding strategy that delineates a genomic region containing a trait locus. Recombinants between two inbred strains are backcrossed to produce a strain that carries a single segment from one strain on the genetic background of the other.

CONSOMIC STRAIN

Also known as a chromosome-substitution strain, it is produced by a breeding strategy in which recombinants between two inbred strains are backcrossed to produce a strain that carries a single chromosome from one strain on the genetic background of the other.

DENDROGRAM

A branching diagram that represents a hierarchy of categories on the basis of degree of similarity or number of shared characteristics. The results of clustering can be presented as dendrograms in which the distance along the tree from one element to the next represents the relative degree of similarity.

EFFECT SIZE

A measure of effect that is adopted when different scales are used to measure an outcome. It is usually defined as the difference in means between the experimental and control groups, divided by the standard deviation of the control or both groups. As effect size is a standardized measure, it allows us to compare and/or combine the effects found in different studies of the same phenomenon.

EPISTASIS

Any genetic interaction in which the combined phenotypic effect of two or more loci is less than (negative epistasis) or greater than (positive epistasis) the sum of effects at individual loci.

INTERVAL MAPPING

A collection of methods for mapping quantitative trait loci. Simple interval mapping uses one or two pairs of flanking markers at a time, and assesses the probability that an interval between two markers is associated with a QTL. Composite interval mapping assesses the probability that an interval between two markers is associated with a QTL, while controlling for the effects of other markers on the trait of interest.

k-MEANS CLUSTER ANALYSIS

A class of cluster analysis in which items are sorted into a specific number of clusters (k) that show the greatest possible distinction.

MARKER GENOTYPING

The process of determining the genotype of a particular subject at a previously mapped marker locus.

MICROARRAY

A device that is used to interrogate complex nucleic-acid samples by hybridization. It makes it possible to count the number of different RNA or cDNA molecules that are present in a sample as a preparative stage for their subsequent characterization.

MICROSATELLITE

A class of repetitive DNA that is made up of repeats that are 2–8 nucleotides in length. They can be highly polymorphic and are frequently used as molecular markers in studies of population genetics.

MODIFIER GENE

A gene that influences the phenotypic expression of another gene.

MONTE CARLO SIMULATION

The use of randomly generated or sampled data and computer simulations to obtain approximate solutions to complex mathematical and statistical problems.

MULTIDIMENSIONAL SCALING

A method of analysis that provides a visual representation of the pattern of similarities between data sets. For example, given a matrix of similarities between various phenotypes, multidimensional scaling plots them on a map such that phenotypes that are perceived to be similar are placed near to each other and those that are perceived to be different are placed far apart.

PLEIOTROPY

The capacity of different alleles of a gene to affect more than one phenotype.

POLYMORPHISM

The simultaneous existence in the same population of two or more genotypes in frequencies that cannot be explained by recurrent mutations.

PRINCIPAL COMPONENTS ANALYSIS

A mathematical procedure that transforms a series of correlated variables into a smaller number of uncorrelated variables that are known as principal components. The first principal component accounts for as much of the variability in the data as possible. Subsequent principal components gradually account for the remaining variability.

QUANTITATIVE TRAIT LOCUS

A genetic locus or chromosomal region that contributes to variability in a complex quantitative trait (such as body weight), as identified by statistical analysis.

REALIZED HERITABILITY

Heritability measured by a response to phenotypic selection. If a phenotype is heritable and selected in two different populations, the two populations will diverge over time and the divergence can be quantified. Realized heritability is an estimate of what the heritability of the phenotype needs to be to account for the rate of divergence that is observed after selection.

RECOMBINANT INBRED STRAIN

A population of multiple strains of fully homozygous subjects that is obtained by repeated breeding from a second-generation hybrid of two inbred strains. The collection of strains comprises 50% of each parental genome in different combinations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, T., Belknap, J. Complex-trait genetics: emergence of multivariate strategies. Nat Rev Neurosci 3, 478–485 (2002). https://doi.org/10.1038/nrn847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing