Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adding new dimensions: towards an integrative understanding of HIV-1 spread

Key Points

  • Standard two-dimensional (2D) cell culture systems do not take into account crucial parameters, such as tissue architecture and composition, the shear flow of body fluids and cellular communication and motility, which determine the efficiency of HIV-1 spread and thus disease progression. New developments in this field of research increasingly facilitate integrative ex vivo and in vivo analyses that take these factors into account.

  • Organotypic or synthetic 3D culture systems mimic the physiology of individual target organs to enable studies of select aspects of HIV-1 pathogenesis ex vivo. Parallel developments in the visualization of productively infected cells or individual virus particles facilitate the tracking of dynamic infection processes in real time.

  • Advanced live-cell imaging approaches to follow the transmission of fluorescent HIV-1 support the idea of cell–cell transmission as a highly effective mechanism of HIV-1 infection.

  • Small-animal models, such as BLT (bone marrow–liver–thymus) humanized mice, provide new opportunities to study and visualize HIV-1 spread and pathogenesis in vivo. Intravital microscopy was recently used for the first time to study retrovirus replication in vivo and provided support for an important role for cell–cell transmission in HIV-1 spread. This approach opens new avenues for gaining important insights into the mechanisms and dynamics of retroviral spread in the infected host.

  • Integrative approaches have helped to define the pathogenic principles of the HIV-1 accessory protein Nef and suggest that Nef is a modulator of HIV-1 target cell motility that may undermine host immune responses by altering immune cell communication.

Abstract

In vitro studies in primary or immortalized cells continue to be used to elucidate the essential principles that govern the interactions between HIV-1 and isolated target cells. However, until recently, substantial technical barriers prevented this information from being efficiently translated to the more complex scenario of HIV-1 spread in the host in vivo, which has limited our understanding of the impact of host physiological parameters on the spread of HIV-1. In this Review, we discuss the recent development of imaging approaches to visualize HIV-1 spread and the adaptation of these approaches to organotypic ex vivo models and animal models. We focus on new concepts, including the mechanisms and in vivo relevance of cell–cell transmission for HIV-1 spread and the function of the HIV-1 pathogenesis factor Nef, which have emerged from the application of these integrative approaches in complex cell systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV-1 vaginal transmission and systemic dissemination.
Figure 2: Complex ex vivo cell systems for studies of HIV-1 spread.
Figure 3: Models for retroviral spread in vivo.
Figure 4: Model for the effects of HIV-1 Nef on T cell trafficking and induction of humoral immunity.

Similar content being viewed by others

References

  1. Stevenson, M. HIV-1 pathogenesis. Nature Med. 9, 853–860 (2003).

    CAS  PubMed  Google Scholar 

  2. Carias, A. M. et al. Defining the interaction of HIV-1 with the mucosal barriers of the female reproductive tract. J. Virol. 87, 11388–11400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson, D. J. et al. Targeting Trojan horse leukocytes for HIV prevention. AIDS 24, 163–187 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Wu, L. & KewalRamani, V. N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nature Rev. Immunol. 6, 859–868 (2006).

    CAS  Google Scholar 

  5. Hladik, F. et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 26, 257–270 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Keele, B. F. et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008).

    CAS  PubMed  Google Scholar 

  7. Roesch, F. et al. Hyperthermia stimulates HIV-1 replication. PLoS Pathog. 8, e1002792 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Maher, D., Wu, X., Schacker, T., Horbul, J. & Southern, P. HIV binding, penetration, and primary infection in human cervicovaginal tissue. Proc. Natl Acad. Sci. USA 102, 11504–11509 (2005).

    CAS  PubMed  Google Scholar 

  9. Merbah, M. et al. HIV-1 expressing the envelopes of transmitted/founder or control/reference viruses have similar infection patterns of CD4 T-cells in human cervical tissue ex vivo. PLoS ONE 7, e50839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Southern, P. J., Horbul, J. E., Miller, B. R. & Maher, D. M. Coming of age: reconstruction of heterosexual HIV-1 transmission in human ex vivo organ culture systems. Mucosal Immunol. 4, 383–396 (2011).

    CAS  PubMed  Google Scholar 

  11. Abner, S. R. et al. A human colorectal explant culture to evaluate topical microbicides for the prevention of HIV infection. J. Infect. Dis. 192, 1545–1556 (2005).

    CAS  PubMed  Google Scholar 

  12. Fischetti, L., Barry, S. M., Hope, T. J. & Shattock, R. J. HIV-1 infection of human penile explant tissue and protection by candidate microbicides. AIDS 23, 319–328 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Palacio, J. et al. In vitro HIV1 infection of human cervical tissue. Res. Virol. 145, 155–161 (1994).

    CAS  PubMed  Google Scholar 

  14. Grivel, J. C. & Margolis, L. Use of human tissue explants to study human infectious agents. Nature Protoc. 4, 256–269 (2009).

    CAS  Google Scholar 

  15. Saba, E. et al. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol. 3, 280–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ballweber, L. et al. Vaginal langerhans cells nonproductively transporting HIV-1 mediate infection of T cells. J. Virol. 85, 13443–13447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morrison, C. S. et al. Hormonal contraception and HIV acquisition: reanalysis using marginal structural modeling. AIDS 24, 1778–1781 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Arien, K. K., Kyongo, J. K. & Vanham, G. Ex vivo models of HIV sexual transmission and microbicide development. Curr. HIV Res. 10, 73–78 (2012).

    CAS  PubMed  Google Scholar 

  19. Dereuddre-Bosquet, N. et al. MiniCD4 microbicide prevents HIV infection of human mucosal explants and vaginal transmission of SHIV(162P3) in cynomolgus macaques. PLoS Pathog. 8, e1003071 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Eckstein, D. A. et al. HIV-1 actively replicates in naive CD4+ T cells residing within human lymphoid tissues. Immunity 15, 671–682 (2001).

    CAS  PubMed  Google Scholar 

  21. Glushakova, S., Baibakov, B., Margolis, L. B. & Zimmerberg, J. Infection of human tonsil histocultures: a model for HIV pathogenesis. Nature Med. 1, 1320–1322 (1995).

    CAS  PubMed  Google Scholar 

  22. Audige, A. et al. HIV-1 does not provoke alteration of cytokine gene expression in lymphoid tissue after acute infection ex vivo. J. Immunol. 172, 2687–2696 (2004).

    CAS  PubMed  Google Scholar 

  23. Doitsh, G. et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143, 789–801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Homann, S. et al. Determinants in HIV-1 Nef for enhancement of virus replication and depletion of CD4+ T lymphocytes in human lymphoid tissue ex vivo. Retrovirology 6, 6 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Margolis, L. B., Glushakova, S., Baibakov, B. & Zimmerberg, J. Syncytium formation in cultured human lymphoid tissue: fusion of implanted HIV glycoprotein 120/41-expressing cells with native CD4+ cells. AIDS Res. Hum. Retroviruses 11, 697–704 (1995).

    CAS  PubMed  Google Scholar 

  26. Glushakova, S. et al. Evidence for the HIV-1 phenotype switch as a causal factor in acquired immunodeficiency. Nature Med. 4, 346–349 (1998).

    CAS  PubMed  Google Scholar 

  27. Kinter, A., Moorthy, A., Jackson, R. & Fauci, A. S. Productive HIV infection of resting CD4+ T cells: role of lymphoid tissue microenvironment and effect of immunomodulating agents. AIDS Res. Hum. Retroviruses 19, 847–856 (2003).

    CAS  PubMed  Google Scholar 

  28. Penn, M. L., Grivel, J. C., Schramm, B., Goldsmith, M. A. & Margolis, L. CXCR4 utilization is sufficient to trigger CD4+ T cell depletion in HIV-1-infected human lymphoid tissue. Proc. Natl Acad. Sci. USA 96, 663–668 (1999).

    CAS  PubMed  Google Scholar 

  29. Uittenbogaart, C. H. et al. Differential tropism of HIV-1 isolates for distinct thymocyte subsets in vitro. AIDS 10, F9–F16 (1996).

    CAS  PubMed  Google Scholar 

  30. Patterson, B. K. et al. Leukemia inhibitory factor inhibits HIV-1 replication and is upregulated in placentae from nontransmitting women. J. Clin. Invest. 107, 287–294 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonyhadi, M. L., Su, L., Auten, J., McCune, J. M. & Kaneshima, H. Development of a human thymic organ culture model for the study of HIV pathogenesis. AIDS Res. Hum. Retroviruses 11, 1073–1080 (1995).

    CAS  PubMed  Google Scholar 

  32. Rosenzweig, M., Bunting, E. M., Damico, R. L., Clark, D. P. & Gaulton, G. N. Human neonatal thymic organ culture: an ex vivo model of thymocyte ontogeny and HIV-1 infection. Pathobiology 62, 245–251 (1994). This paper provides an initial description of the FTOC system as an ex vivo system for HIV infection.

    CAS  PubMed  Google Scholar 

  33. Rosenzweig, M., Clark, D. P. & Gaulton, G. N. Selective thymocyte depletion in neonatal HIV-1 thymic infection. AIDS 7, 1601–1605 (1993).

    CAS  PubMed  Google Scholar 

  34. Skowronski, J., Parks, D. & Mariani, R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J. 12, 703–713 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stove, V. et al. Signaling but not trafficking function of HIV-1 protein Nef is essential for Nef-induced defects in human intrathymic T-cell development. Blood 102, 2925–2932 (2003).

    CAS  PubMed  Google Scholar 

  36. Verhasselt, B. et al. Human immunodeficiency virus nef gene expression affects generation and function of human T cells, but not dendritic cells. Blood 94, 2809–2818 (1999).

    CAS  PubMed  Google Scholar 

  37. Baker, B. M. & Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pedersen, J. A. & Swartz, M. A. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005).

    PubMed  Google Scholar 

  39. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  40. Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nature Cell Biol. 11, 1438–1443 (2009).

    CAS  PubMed  Google Scholar 

  41. Renkawitz, J. & Sixt, M. Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep. 11, 744–750 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Andrei, G. Three-dimensional culture models for human viral diseases and antiviral drug development. Antiviral Res. 71, 96–107 (2006).

    CAS  PubMed  Google Scholar 

  43. Stolp, B. et al. HIV-1 Nef interferes with T-lymphocyte circulation through confined environments in vivo. Proc. Natl Acad. Sci. USA 109, 18541–18546 (2012). This intravital microscopy study investigates the effects of HIV-1 Nef on mouse T cell migration.

    CAS  PubMed  Google Scholar 

  44. Browning, J. et al. Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc. Natl Acad. Sci. USA 94, 14637–14641 (1997).

    CAS  PubMed  Google Scholar 

  45. Keppler, O. T. et al. Progress toward a human CD4/CCR5 transgenic rat model for de novo infection by human immunodeficiency virus type 1. J. Exp. Med. 195, 719–736 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lores, P. et al. Expression of human CD4 in transgenic mice does not confer sensitivity to human immunodeficiency virus infection. AIDS Res. Hum. Retroviruses 8, 2063–2071 (1992).

    CAS  PubMed  Google Scholar 

  47. Goffinet, C. et al. Primary T-cells from human CD4/CCR5-transgenic rats support all early steps of HIV-1 replication including integration, but display impaired viral gene expression. Retrovirology 4, 53 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. Michel, N. et al. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo. Retrovirology 6, 2 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Seay, K. et al. Mice transgenic for CD4-specific human CD4, CCR5 and cyclin T1 expression: a new model for investigating HIV-1 transmission and treatment efficacy. PLoS ONE 8, e63537 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bieniasz, P. D. & Cullen, B. R. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J. Virol. 74, 9868–9877 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, J. X., Diehl, G. E. & Littman, D. R. Relief of preintegration inhibition and characterization of additional blocks for HIV replication in primary mouse T cells. PLoS ONE 3, e2035 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. Hatziioannou, T. & Evans, D. T. Animal models for HIV/AIDS research. Nature Rev. Microbiol. 10, 852–867 (2012).

    CAS  Google Scholar 

  53. Gruell, H. et al. Antibody and antiretroviral preexposure prophylaxis prevent cervicovaginal HIV-1 infection in a transgenic mouse model. J. Virol. 87, 8535–8544 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Akkina, R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435, 14–28 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Berges, B. K. & Rowan, M. R. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology 8, 65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Denton, P. W. & Garcia, J. V. Humanized mouse models of HIV infection. AIDS Rev. 13, 135–148 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Greenblatt, M. B. et al. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS ONE 7, e44664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lavender, K. J. et al. BLT-humanized C57BL/6 Rag2−/−γ c−/−CD47−/− mice are resistant to GVHD and develop B and T cell immunity to HIV infection. Blood 122, 4013–4020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rongvaux, A. et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu. Rev. Immunol. 31, 635–674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    CAS  PubMed  Google Scholar 

  61. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  62. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Rev. Immunol. 2, 872–880 (2002).

    CAS  Google Scholar 

  63. Hickman, H. D. et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nature Immunol. 9, 155–165 (2008).

    CAS  Google Scholar 

  64. Norbury, C. C., Malide, D., Gibbs, J. S., Bennink, J. R. & Yewdell, J. W. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nature Immunol. 3, 265–271 (2002).

    CAS  Google Scholar 

  65. Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl Acad. Sci. USA 109, 19739–19744 (2012).

    CAS  PubMed  Google Scholar 

  66. Hickman, H. D. et al. Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin. Cell Host Microbe 13, 155–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q. J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sherer, N. M. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biol. 9, 310–315 (2007).

    CAS  PubMed  Google Scholar 

  69. Sourisseau, M., Sol-Foulon, N., Porrot, F., Blanchet, F. & Schwartz, O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81, 1000–1012 (2007).

    CAS  PubMed  Google Scholar 

  70. Sowinski, S. et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biol. 10, 211–219 (2008).

    CAS  PubMed  Google Scholar 

  71. Murooka, T. T. et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490, 283–287 (2012). This is the first intravital microscopy study of HIV infection in humanized mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Swingler, S. et al. Evidence for a pathogenic determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS. Cell Host Microbe 4, 63–76 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dale, B. M., Alvarez, R. A. & Chen, B. K. Mechanisms of enhanced HIV spread through T-cell virological synapses. Immunol. Rev. 251, 113–124 (2013).

    PubMed  Google Scholar 

  74. Feldmann, J. & Schwartz, O. HIV-1 virological synapse: live imaging of transmission. Viruses 2, 1666–1680 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhong, P., Agosto, L. M., Munro, J. B. & Mothes, W. Cell-to-cell transmission of viruses. Curr. Opin. Virol. 3, 44–50 (2013).

    CAS  PubMed  Google Scholar 

  76. Hubner, W. et al. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323, 1743–1747 (2009). This is an in vitro live-cell imaging study that proposes the cell contact-dependent and endocytosis-dependent transfer of HIV particles between T cells in clusters.

    PubMed  PubMed Central  Google Scholar 

  77. Jin, J., Sherer, N. M., Heidecker, G., Derse, D. & Mothes, W. Assembly of the murine leukemia virus is directed towards sites of cell–cell contact. PLoS Biol. 7, e1000163 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Rudnicka, D. et al. Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J. Virol. 83, 6234–6246 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Daecke, J., Fackler, O. T., Dittmar, M. T. & Krausslich, H. G. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol. 79, 1581–1594 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fackler, O. T. & Peterlin, B. M. Endocytic entry of HIV-1. Curr. Biol. 10, 1005–1008 (2000).

    CAS  PubMed  Google Scholar 

  81. Dale, B. M. et al. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 10, 551–562 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Miyauchi, K., Kim, Y., Latinovic, O., Morozov, V. & Melikyan, G. B. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137, 433–444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sewald, X., Gonzalez, D. G., Haberman, A. M. & Mothes, W. In vivo imaging of virological synapses. Nature Commun. 3, 1320 (2012). This intravital microscopy study of MLV infection in mice describes Env-dependent Gag polarization in infected lymphocytes.

    Google Scholar 

  84. Malim, M. H. & Emerman, M. HIV-1 accessory proteins — ensuring viral survival in a hostile environment. Cell Host Microbe 3, 388–398 (2008).

    CAS  PubMed  Google Scholar 

  85. Deacon, N. J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    CAS  PubMed  Google Scholar 

  86. Kestler, H. W. et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651–662 (1991).

    CAS  PubMed  Google Scholar 

  87. Kirchhoff, F., Greenough, T. C., Brettler, D. B., Sullivan, J. L. & Desrosiers, R. C. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N. Engl. J. Med. 332, 228–232 (1995).

    CAS  PubMed  Google Scholar 

  88. Geyer, M., Fackler, O. T. & Peterlin, B. M. Structure–function relationships in HIV-1 Nef. EMBO Rep. 2, 580–585 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Laguette, N., Bregnard, C., Benichou, S. & Basmaciogullari, S. Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins. Mol. Aspects Med. 31, 418–433 (2010).

    CAS  PubMed  Google Scholar 

  90. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J. M. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nature Med. 2, 338–342 (1996).

    CAS  PubMed  Google Scholar 

  91. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    CAS  PubMed  Google Scholar 

  92. Michel, N., Allespach, I., Venzke, S., Fackler, O. T. & Keppler, O. T. The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr. Biol. 15, 714–723 (2005).

    CAS  PubMed  Google Scholar 

  93. Wildum, S., Schindler, M., Munch, J. & Kirchhoff, F. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J. Virol. 80, 8047–8059 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fackler, O. T., Alcover, A. & Schwartz, O. Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nature Rev. Immunol. 7, 310–317 (2007).

    CAS  Google Scholar 

  95. Pan, X. et al. HIV-1 Nef compensates for disorganization of the immunological synapse by inducing trans-Golgi network-associated Lck signaling. Blood 119, 786–797 (2012).

    CAS  PubMed  Google Scholar 

  96. Schindler, M. et al. Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125, 1055–1067 (2006).

    CAS  PubMed  Google Scholar 

  97. Thoulouze, M. I. et al. Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 24, 547–561 (2006).

    CAS  PubMed  Google Scholar 

  98. Choe, E. Y., Schoenberger, E. S., Groopman, J. E. & Park, I. W. HIV Nef inhibits T cell migration. J. Biol. Chem. 277, 46079–46084 (2002).

    CAS  PubMed  Google Scholar 

  99. Janardhan, A., Swigut, T., Hill, B., Myers, M. P. & Skowronski, J. HIV-1 Nef binds the DOCK2–ELMO1 complex to activate Rac and inhibit lymphocyte chemotaxis. PLoS Biol. 2, E6 (2004).

    PubMed  PubMed Central  Google Scholar 

  100. Stolp, B., Abraham, L., Rudolph, J. M. & Fackler, O. T. Lentiviral Nef proteins utilize PAK2-mediated deregulation of cofilin as a general strategy to interfere with actin remodeling. J. Virol. 84, 3935–3948 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stolp, B. et al. HIV-1 Nef interferes with host cell motility by deregulation of Cofilin. Cell Host Microbe 6, 174–186 (2009).

    CAS  PubMed  Google Scholar 

  102. Sugimoto, C. et al. nef gene is required for robust productive infection by simian immunodeficiency virus of T-cell-rich paracortex in lymph nodes. J. Virol. 77, 4169–4180 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Haller, C. et al. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J. Biol. Chem. 281, 19618–19630 (2006).

    CAS  PubMed  Google Scholar 

  104. Rudolph, J. M., Eickel, N., Haller, C., Schindler, M. & Fackler, O. T. Inhibition of T-cell receptor-induced actin remodeling and relocalization of Lck are evolutionarily conserved activities of lentiviral Nef proteins. J. Virol. 83, 11528–11539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nobile, C. et al. HIV-1 Nef inhibits ruffles, induces filopodia and modulates migration of infected lymphocytes. J. Virol. 84, 2282–2293 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Qiao, X. et al. Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nature Immunol. 7, 302–310 (2006).

    CAS  Google Scholar 

  107. Xu, W. et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nature Immunol. 10, 1008–1017 (2009).

    CAS  Google Scholar 

  108. Curreli, S. et al. B cell lymphoma in HIV transgenic mice. Retrovirology 10, 92 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Moir, S. & Fauci, A. S. B cells in HIV infection and disease. Nature Rev. Immunol. 9, 235–245 (2009).

    CAS  Google Scholar 

  110. Palha, N. et al. Real-time whole-body visualization of chikungunya virus infection and host interferon response in zebrafish. PLoS Pathog. 9, e1003619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Cordeiro, J. V. et al. F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS ONE 4, e8506 (2009).

    PubMed  PubMed Central  Google Scholar 

  112. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhong, P. et al. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS ONE 8, e53138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cavrois, M., De Noronha, C. & Greene, W. C. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nature Biotech. 20, 1151–1154 (2002).

    CAS  Google Scholar 

  115. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002). This is the first study to visualize the post-entry behaviour of HIV virions by tracking the fate of the virion-associated HIV protein Vpr.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chojnacki, J. & Muller, B. Investigation of HIV-1 assembly and release using modern fluorescence imaging techniques. Traffic 14, 15–24 (2013).

    CAS  PubMed  Google Scholar 

  117. Bann, D. V. & Parent, L. J. Application of live-cell RNA imaging techniques to the study of retroviral RNA trafficking. Viruses 4, 963–979 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Muller, B. et al. Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J. Virol. 78, 10803–10813 (2004).

    PubMed  PubMed Central  Google Scholar 

  119. Beltman, J. B., Maree, A. F. & de Boer, R. J. Analysing immune cell migration. Nature Rev. Immunol. 9, 789–798 (2009).

    CAS  Google Scholar 

  120. Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    CAS  PubMed  Google Scholar 

  121. Breart, B., Lemaitre, F., Celli, S. & Bousso, P. Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J. Clin. Invest. 118, 1390–1397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    CAS  PubMed  Google Scholar 

  123. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    CAS  PubMed  Google Scholar 

  124. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nature Immunol. 8, 992–1000 (2007).

    CAS  Google Scholar 

  125. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Beuneu, H. et al. Visualizing the functional diversification of CD8+ T cell responses in lymph nodes. Immunity 33, 412–423 (2010).

    CAS  PubMed  Google Scholar 

  127. Azar, G. A., Lemaitre, F., Robey, E. A. & Bousso, P. Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes. Proc. Natl Acad. Sci. USA 107, 3675–3680 (2010).

    CAS  PubMed  Google Scholar 

  128. Friedman, R. S., Beemiller, P., Sorensen, C. M., Jacobelli, J. & Krummel, M. F. Real-time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics. J. Exp. Med. 207, 2733–2749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Melichar, H. J. et al. Quantifying subcellular distribution of fluorescent fusion proteins in cells migrating within tissues. Immunol. Cell. Biol. 89, 549–557 (2011).

    CAS  PubMed  Google Scholar 

  130. Lodygin, D. et al. A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nature Med. 19, 784–790 (2013).

    CAS  PubMed  Google Scholar 

  131. Marangoni, F. et al. The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 38, 237–249 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pesic, M. et al. 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J. Clin. Invest. 123, 1192–1201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.R.M. was supported by US National Institutes of Health (NIH) grants R01 AI097052, R01 DA036298, P01 AI0178897 and P30 AI060354. T.T.M. was supported by a Massachusetts General Hospital Executive Committee on Research (MGH ECOR) Tosteson Postdoctoral Fellowship Award, NIH training grant T32 AI007387, Harvard University Center for AIDS Research (CFAR) grant NIH 5P30AI060354-09 and a pilot grant from the Center for Human Immunology (NIH U19 AI082630). O.T.F. and A.I. are supported by the Deutsche Forschungsgemeinschaft (grant numbers SFB 638 and SFB 1129, respectively). O.T.F. is a member of the CellNetworks Cluster of Excellence EXC81.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver T. Fackler or Thorsten R. Mempel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Two-dimensional cell culture systems

(2D cell culture systems). Classical culture systems in which cells settle on a 2D plastic or glass surface.

Diffusive percolation

A term introduced to describe the movement of free virions through epithelia in analogy to the movement of water molecules through porous media.

Lymph node

An organized stromal environment where lymph is filtered and where most T cells and B cells initially encounter their cognate antigens for the induction of adaptive immune responses. Migratory dendritic cells and antigen enter lymph nodes through the afferent lymphatics, whereas most T cells enter from the bloodstream through high endothelial venules.

Productive infection

Infection that comprises all steps of the viral life cycle, including viral protein and particle production.

Latent infection

Infection in which the life cycle halts as an integrated provirus and the transcription of viral genes does not occur.

Organotypic cultures

Ex vivo cultures of tissue or tissue sections that have been obtained from HIV-negative donors in which physiological infection by HIV-1 can be simulated. When the tissue architecture of these organs is preserved, such cultures are referred to as organotypic.

3D cell culture models

Cell culture models that use an extracellular matrix to provide spacing and a complex 3D architecture.

Second harmonic generation

A nonlinear light-scattering process by which certain biological structures, including collagen fibres, double the frequency of light, thus turning — for example — 900 nm infrared light into 450 nm blue light. This phenomenon is useful to visualize structural tissue elements in multiphoton imaging studies without the need for labelling.

Virological synapses

Ordered assemblies of viral and host proteins at the interface between infected (that is, donor) and uninfected (that is, target) cells that facilitate the transfer of infectious virus. Virus transfer can occur via cell-free particles across the synaptic cleft but may also involve transport along cellular protrusions.

Cytonemes

Cellular extensions that protrude from one cell towards a neighbouring cell and enable transport of surface-bound virus particles.

Nanotubes

Cellular protrusions that form membrane bridges between donor and target cells, the lumens of which can allow for exchange of virus, along with cytoplasmic contents.

BLT humanized mouse model

(Bone marrow–liver–thymus humanized mouse model). Immunodeficient mice that have been engrafted with foetal human thymus, foetal liver and haematopoietic stem cells in order to recreate a functional human immune system in a small-animal model.

Uropods

The narrow trailing edges of polarized, migrating leukocytes, which differ from the cell front not only in shape and position but also in the organelles, cytoskeletal proteins and membrane molecules involved in motility, such as adhesion molecules and signalling receptors, that they contain.

Immunological synapses

The contact interfaces between antigen-presenting cells and T cells; they support adhesion, polarized signal transduction and T cell activation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fackler, O., Murooka, T., Imle, A. et al. Adding new dimensions: towards an integrative understanding of HIV-1 spread. Nat Rev Microbiol 12, 563–574 (2014). https://doi.org/10.1038/nrmicro3309

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing