Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle

Key Points

  • Biogeochemical iron (Fe) cycling in pH-circumneutral environments involves concurrent microbially and chemically driven ferrous iron (Fe(II)) oxidation and Fe(III) reduction processes, which must be distinguished in the field and in the laboratory with carefully designed control experiments.

  • Microbial Fe(II) oxidation can be coupled to reduction of molecular oxygen (O2) by microaerophilic Fe(II) oxidizers, to nitrate (NO3) reduction by NO3-reducing Fe(II) oxidizers and to light energy by anoxygenic photosynthetic Fe(II) oxidizers. Whereas the microaerophiles and NO3 reducers need to overcome competition from abiotic Fe reactions with O2 and NO2, the photoferrotrophs can benefit from photochemical Fe reduction that produces Fe(II).

  • At circumneutral pH and high O2 concentrations, chemical Fe(II) oxidation with O2 is kinetically very fast, whereas neutrophilic Fe(II)-oxidizing microorganisms exploit slower kinetics under micro-oxic conditions. Although a kinetic expression that includes chemical and microbial Fe(II) oxidation has not yet been formulated and continues to be a challenge, both reactions can be expressed individually and must account for both homogeneous and heterogenous Fe(II) oxidation.

  • Dissimilatory reduction of Fe(III) oxides and oxyhydroxides is a challenge for microorganisms as their cell envelopes are impermeable to poorly soluble Fe(III) minerals. In order to overcome this limitation, environmental Fe(III)-reducing microorganisms have developed electron-transfer strategies including the use of multihaem c-type cytochromes for direct electron transfer, electron shuttling via native and environmental extracellular electron shuttles, Fe(III) dissolution by chelating agents and electron transfer via conductive pili.

  • One-electron transfers between Fe and reactive oxygen species (ROS) drive Fe redox transformations in sunlit natural waters, enhanced by photochemical production of ROS in waters containing organic carbon and O2. Recent reports of biological ROS production by diverse microorganisms pushes the importance of ROS-driven Fe cycling into darker waters.

  • Many Fe(II)-oxidizing and Fe(III)-reducing bacteria are metabolically flexible, which helps them to adapt to environmental fluctuations of electron donors and acceptors; they actively construct niches to cope with competition from other microorganisms and to overcome substrate limitation by competing chemical reactions.

Abstract

Many iron (Fe) redox processes that were previously assumed to be purely abiotic, such as photochemical Fe reactions, are now known to also be microbially mediated. Owing to this overlap, discerning whether biotic or abiotic processes control Fe redox chemistry is a major challenge for geomicrobiologists and biogeochemists alike. Therefore, to understand the network of reactions within the biogeochemical Fe cycle, it is necessary to determine which abiotic or microbially mediated reactions are dominant under various environmental conditions. In this Review, we discuss the major microbially mediated and abiotic reactions in the biogeochemical Fe cycle and provide an integrated overview of biotic and chemically mediated redox transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbially and chemically mediated reactions that form the biogeochemical Fe cycle.
Figure 2: Microbially and chemically mediated Fe(II) oxidation by O2.
Figure 3: Mechanisms of electron transfer from microorganisms to Fe(III) minerals.
Figure 4: Designing the proper controls and recognizing pitfalls during acidification for Fe-extraction procedures.

Similar content being viewed by others

References

  1. Ehrenberg, C. G. Vorlaufige Mitteilungen über das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung. Poggendorff Annalen 38, 213–227 (in German) (1836).

    Article  Google Scholar 

  2. Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988). This landmark paper provides the first evidence of organic C oxidation coupled to metal respiration (that is, to the transfer of electrons to Fe( III)).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993). This paper describes the first isolates of anoxygenic phototrophic Fe( II )-oxidizing bacteria and provides the stoichiometry of the reaction.

    Article  CAS  Google Scholar 

  4. Straub, K. L., Benz, M., Schink, B. & Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62, 1458–1460 (1996). This work is the first demonstration of microbial Fe( II ) oxidation coupled to nitrate reduction.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Emerson, D. & Moyer, C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63, 4784–4792 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rentz, J. A., Kraiya, C., Luther, G. W. 3rd & Emerson, D. Control of ferrous iron oxidation within circumneutral microbial iron mats by cellular activity and autocatalysis. Environ. Sci. Technol. 41, 6084–6089 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Carlson, H. K., Clark, I. C., Melnyk, R. A. & Coates, J. D. Towards a mechanistic understanding of anaerobic nitrate dependent iron oxidation: balancing electron uptake and detoxification. Front. Microbiol. 3, 57 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klueglein, N. & Kappler, A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 — questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11, 180–190 (2013). This paper is an excellent example of coupled biotic–abiotic reactions in biogeochemical processes and describes how microbially driven denitrification leads to the formation of a reactive chemical species (that is, NO 2) that prevents the unambiguous identification of enzymatic Fe( II ) oxidation.

    Article  CAS  PubMed  Google Scholar 

  9. Weber, K. A., Urrutia, M. M., Churchill, P. F., Kukkadapu, R. K. & Roden, E. E. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. 8, 100–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Bird, L. J., Bonnefoy, V. & Newman, D. K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19, 330–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Emerson, D. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem. Soc. Trans. 40, 1211–1216 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Shi, L. et al. Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1. Front. Microbiol. 3, 50 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hartshorne, R. S. et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl Acad. Sci. USA 106, 22169–22174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, J. et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front. Microbiol. 3, 37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Emerson, D. et al. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front. Microbiol. 4, 1–17 (2013).

    Article  Google Scholar 

  19. Fleming, E. J. et al. What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH. PLoS ONE 6, 1–10 (2011).

    Article  CAS  Google Scholar 

  20. Kucera, S. & Wolfe, R. S. A selective enrichment method for Gallionella ferruginea. J. Bacteriol. 74, 344–349 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiss, J. V. et al. Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. Nov., and Sideroxydans paludicola sp. Nov. Geomicrobiol. J. 24, 559–570 (2007).

    Article  CAS  Google Scholar 

  22. Singer, E. et al. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE 6, 1–9 (2011).

    Google Scholar 

  23. Hegler, F., Lösekann-Behrens, T., Hanselmann, K., Behrens, S. & Kappler, A. Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring. Appl. Environ. Microbiol. 78, 7185–7196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edwards, K. J., Rogers, D. R., Wirsen, C. O. & McCollom, T. M. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69, 2906–2913 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bloethe, M. & Roden, E. E. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl. Environ. Microbiol. 75, 6937–6940 (2009).

    Article  CAS  Google Scholar 

  26. Fleming, E. J. et al. Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA. FEMS Microb. Ecol. 85, 116–127 (2013).

    Article  Google Scholar 

  27. Davison, W. & Seed, G. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim. Cosmochim. Acta 47, 67–79 (1983).

    Article  CAS  Google Scholar 

  28. King, D. W., Lounsbury, H. A. & Millero, F. J. Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 29, 818–824 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Druschel, G. K., Emerson, D., Sutka, R., Sucheki, P. & Luther, G. W. 3rd. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 72, 3358–3370 (2008). This work defines the O 2 concentrations under which microaerophilic Fe( II )-oxidizing bacteria effectively outcompete the kinetics of chemical Fe( II ) oxidation.

    Article  CAS  Google Scholar 

  30. Vollrath, S., Behrends, T., Koch, C. B. & van Cappellen, P. Effects of temperature on rates and mineral products of microbial Fe(II) oxidation by Leptothrix cholodnii at microaerobic conditions. Geochim. Cosmochim. Acta 108, 107–124 (2013).

    Article  CAS  Google Scholar 

  31. Saini, G. & Chan, C. S. Near-neutral surface charge and hydrophilicity prevent mineral encrustation of Fe-oxidizing microorganisms. Geobiology 11, 191–200 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J. & Edwards, K. J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 5, 717–727 (2011). This work tracks the formation of organic stalks by Fe( II )-oxidizing bacteria and suggests why this localization of Fe mineral formation away from the cell occurs and how it could be used as a biosignature.

    Article  CAS  PubMed  Google Scholar 

  33. Chan, C. S. et al. Microbial polysaccharides template assembly of nanocrystal fibers. Science 303, 1656–1658 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Toner, B. M. et al. Mineralogy of iron microbial mats from Loihi Seamount. Front. Microbiol. 3, 118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kuehl, M., Lassen, C. & Jørgensen, B. B. Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes. Mar. Ecol. Prog. Ser. 105, 139–148 (1994).

    Article  Google Scholar 

  36. Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868 (2005).

    Article  CAS  Google Scholar 

  37. Crowe, S. A. et al. Photoferrotrophs thrive in an Archean ocean analogue. Proc. Natl Acad. Sci. USA 105, 15938–15943 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kappler, A. & Newman, D. K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 1217–1226 (2004).

    Article  CAS  Google Scholar 

  39. Miot, J. et al. Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl. Environ. Microbiol. 75, 5586–5591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heising, S., Richter, L., Ludwig, W. & Schink, S. Chlorobium ferrooxidans sp. nov., a phototrophic green sulphur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch. Microbiol. 172, 116–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Croal, L. R., Johnson, C. M., Beard, B. L. & Newman, D. K. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 1227–1242 (2004).

    Article  CAS  Google Scholar 

  42. Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiao, Y., Kappler, A., Croal, L. R. & Newman, D. K. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71, 4487–4496 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Croal, L. R., Jiao, Y. & Newman, D. K. The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J. Bacteriol. 189, 1774–1782 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Saraiva, I. H., Newman, D. K. & Louro, R. O. Functional characterization of the FoxE iron oxidoreductase from the photoferrotroph Rhodobacter ferrooxidans SW2. J. Biol. Chem. 287, 25541–25548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emmenegger, L., Schönenberger, R., Sigg, L. & Sulzberger, B. Light-induced redox cycling of iron in circumneutral lakes. Limnol. Oceanogr. 46, 49–61 (2001).

    Article  CAS  Google Scholar 

  47. Barbeau, K. Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochem. Photobiol. 82, 1505–1516 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Voelker, B. M. & Sedlak, D. L. Iron reduction by photoproduced superoxide in seawater. Mar. Chem. 50, 93–102 (1995). This work shows that steady-state concentrations of Fe( II ) in sunlit waters are maintained by photochemically produced superoxide-reducing Fe( III).

    Article  CAS  Google Scholar 

  49. Roy, E. G., Wells, M. L. & King, D. W. Persistence of iron(II) in surface waters of the western subarctic Pacific. Limnol. Oceanogr. 53, 89–98 (2008).

    Article  CAS  Google Scholar 

  50. Barbeau, K., Rue, E. L., Bruland, K. W. & Butler, A. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413, 409–413 (2001). This publication reports that bacterially produced siderophores bind to Fe( III ) that is readily reduced by photolysis, which increases Fe availability in sunlit aquatic systems.

    Article  CAS  PubMed  Google Scholar 

  51. Lever, A. B. P. Charge transfer spectra of transition metal complexes. J. Chem. Educ. 51, 612–616 (1974).

    Article  CAS  Google Scholar 

  52. Barbeau, K., Rue, E. L., Trick, C. G., Bruland, K. W. & Butler, A. Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnol. Oceanogr. 48, 1069–1078 (2003).

    Article  CAS  Google Scholar 

  53. Rose, A. L. The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms. Front. Microbiol. 3, 1–21 (2012).

    Article  Google Scholar 

  54. Marshall, J. A., de Salas, M., Oda, T. & Hallegraeff, G. Superoxide production by marine microalgae. Mar. Biol. 147, 533–540 (2005).

    Article  CAS  Google Scholar 

  55. Hansel, C. M., Zeiner, C. A., Santelli, C. M. & Webb, S. M. Mn(iv) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc. Natl Acad. Sci. USA 109, 12621–12625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diaz, J. M. et al. Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340, 1223–1226 (2013). This paper shows that superoxide is produced by diverse heterotrophic organisms, which expands superoxide production from sunlit environments into darker waters.

    Article  CAS  PubMed  Google Scholar 

  57. Minibayeva, F. V., Gordon, L. K., Kolesnikov, O. P. & Chasov, A. V. Role of extracellular peroxidase in the superoxide production by wheat root cells. Protoplasma 217, 125–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Rush, J. D. & Bielski, B. H. J. Pulse radiolytic studies of the reactions of HO2/O2 with Fe(II)/Fe(III) ions. The reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber–Weiss reaction. J. Phys. Chem. 89, 5062–5066 (1985).

    Article  CAS  Google Scholar 

  59. González-Dávila, M., Santana-Casiano, J. M. & Millero, F. J. Competition between O2 and H2O2 in the oxidation of Fe(II) in natural waters. J. Sol. Chem. 35, 95–111 (2006).

    Article  CAS  Google Scholar 

  60. Rose, A. L. & Waite, T. D. Reduction of organically complexed ferric iron by superoxide in a simulated natural water. Environ. Sci. Technol. 39, 2645–2650 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Haber, F. & Weiss, J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. 147, 332–351 (1934).

    Article  CAS  Google Scholar 

  62. Voelker, B. M. & Sulzberger, B. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ. Sci. Technol. 30, 1106–1114 (1996).

    Article  CAS  Google Scholar 

  63. Miller, C. J., Rose, A. L. & Waite, T. D. Impact of natural organic matter on H2O2-mediated oxidation of Fe(II) in a stimulated freshwater system. Geochim. Cosmoshim. Acta 73, 2758–2768 (2009).

    Article  CAS  Google Scholar 

  64. Vermilyea, A. W., Hansard, S. P. & Voelker, B. M. Dark production of hydrogen peroxide in the Gulf of Alaska. Limnol. Oceanogr. 55, 580–588 (2010).

    Article  CAS  Google Scholar 

  65. Kopf, S. H. & Newman, D. K. Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron. Geobiology 10, 216–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Melton, E. D., Schmidt, C., Behrens, B., Schink, B. & Kappler, A. Metabolic flexibility and substrate preference by the Fe(II) oxidizing purple non-sulphur bacterium Rhodopseudomonas palustris strain TIE-1. Geomicrobiol. J. 31, 835–843 (2014).

    Article  CAS  Google Scholar 

  67. Rose, A. L., Salmon, T. P., Lukondeh, T., Neilan, B. A. & Waite, T. D. Use of superoxide as an electron shuttle for iron acquisition by the marine cyanobacterium Lyngbya majuscule. Environ. Sci. Technol. 39, 3708–3715 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Klueglein, N. et al. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol. 80, 1051–1061 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Melton, E. D., Schmidt, C. & Kappler, A. Microbial iron(II) oxidation in littoral freshwater lake sediment: the potential for competition between phototrophic versus nitrate-reducing iron(II)-oxidizers. Front. Microbiol. 3, 1–12 (2012).

    Article  Google Scholar 

  70. Muehe, E. M., Gerhardt, S., Schink, B. & Kappler, A. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiol. Ecol. 70, 335–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Weber, K. D. et al. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. Appl. Microbiol. Biotechnol. 83, 555–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chakraborty, A. & Picardal, F. Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp strain UWNR4 and Acidovorax sp strain 2AN. Appl. Environ. Microbiol. 79, 748–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sørensen, J. & Thorling, L. Stimulation by lepidocrocite (γ-FEOOH) of Fe(II)-dependent nitrite reduction. Geochim. Cosmochim. Acta 55, 1289–1294 (1991).

    Article  Google Scholar 

  74. Beller, H. R. et al. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans. Front. Microbiol. 4, 249 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chakraborty, A., Roden, E. E., Schieber, J. & Picardal, F. Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Appl. Environ. Microbiol. 77, 8548–8556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Haaijer, S. C. M., Lamers, L. P. M., Smolders, A. J. P. & Jetten, M. S. M. Iron sulphide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol. J. 24, 391–401 (2007).

    Article  CAS  Google Scholar 

  77. Jørgensen, C. J., Jacobsen, O. S., Elberling, B. & Aamand, J. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ. Sci. Technol. 43, 4851–4857 (2009).

    Article  PubMed  CAS  Google Scholar 

  78. Cardoso, R. B. et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioengineer. 95, 1148–1157 (2006).

    Article  CAS  Google Scholar 

  79. Schippers, A. & Jørgensen, B. B. Biogeochemistry of pyrite and iron sulphide oxidation in marine sediments. Geochim. Cosmochim. Acta 66, 85–92 (2002).

    Article  CAS  Google Scholar 

  80. Bosch, J., Lee, K. Y., Jordan, G., Kim, K. W. & Meckenstock, R. U. Anaerobic nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Environ. Sci. Technol. 46, 2095–2101 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Clément, J. C., Shrestha, J., Ehrenfeld, J. G. & Jaffé, P. R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem. 37, 2323–2328 (2005).

    Article  CAS  Google Scholar 

  82. Shrestha, J., Rich, J., Ehrenfeld, J. & Jaffé, P. R. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push–pull rate determination. Soil Sci. 174, 156–164 (2009).

    Article  CAS  Google Scholar 

  83. Yang, W. H., Weber, K. A. & Silver, W. L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geosci. 5, 538–541 (2012).

    Article  CAS  Google Scholar 

  84. Zhu, X., Silva, L. C. R., Doane, T. A. & Horwath, W. R. Iron: the forgotten driver of nitrous oxide production in agricultural soil. PLoS ONE 8, e60146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Picardal, F. Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx. Front. Microbiol. 3, 1–7 (2012).

    Article  Google Scholar 

  86. van Cleemput, O. & Samater, A. H. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertilizer Res. 45, 81–89 (1996).

    Article  Google Scholar 

  87. Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16, 41–83 (2000). This paper brings together current knowledge on microbial Mn and Fe( III ) reduction in aquatic sediments and reviews the implications for the local geochemistry.

    Article  CAS  Google Scholar 

  88. Thamdrup, B., Fossing, H. & Jørgensen, B. B. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58, 5115–5129 (1994).

    Article  CAS  Google Scholar 

  89. Madison, A. S., Tebo, B. M., Mucci, A., Sundby, B. & Luther, G.W. 3rd. Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341, 875–878 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Postma, D. Concentration of Mn and separation from Fe in sediments – I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim. Cosmochim. Acta 49, 1023–1033 (1985).

    Article  CAS  Google Scholar 

  91. Lovley, D. R. et al. Geobacter: the microbe electric's physiology, ecology and practical applications. Adv. Microb. Physiol. 59, 1–100 (2011). This is a comprehensive review on the knowledge of Geobacter spp.

    Article  CAS  PubMed  Google Scholar 

  92. Obuekwe, C. O., Westlake, W. & Cook, F. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can. J. Microbiol. 27, 692–697 (1981).

    Article  CAS  PubMed  Google Scholar 

  93. Myers, C. R. & Nealson, K. H. Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim. Cosmochim. Acta 52, 2727–2732 (1988). The paper provides the first unequivocal evidence that metal reduction is coupled to cellular metabolism and growth in Shewanellae.

    Article  CAS  Google Scholar 

  94. Myers, C. R. & Nealson, K. H. Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron (III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172, 6232–6238 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ramana, C. V. & Sasikala, C. Albidoferax, a new genus of Comamonadaceae and reclassification of Rhodoferax ferrireducens (Finneran et al. 2003) as Albidoferax ferrireducens comb. Nov. J. Gen. Appl. Microbiol. 55, 301–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R. Geothrix fermentans gen.nov., sp. Nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol. 49, 1615–1622 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Tor, J. M. & Lovley, D. R. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ. Microbiol. 3, 281–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Kashefi, K., Holmes, D. E., Reysenbach, A. L. & Lovley, D. R. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens ge., nov., sp., nov. Appl. Environ. Microbiol. 68, 1735–1742 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science 301, 934 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Lovley, D. R., Stolz, J. F., Nord G. L. Jr. & Phillips, J. P. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254 (1987). This paper presents the first evidence for the production of magnetite by Fe( III )-reducing bacteria, thus providing a pathway by which magnetite is formed in low-temperature systems

    Article  CAS  Google Scholar 

  101. Kane, S. R., Beller, H. R., Legler, T. C. & Anderson, R. T. Biochemical and genetic evidence for benzyl succinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens. Biodegradation 13, 149–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, T. et al. Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl. Environ. Microbiol. 79, 7800–7806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Childers, S. E., Cifo, S. & Lovley, D. R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416, 767–769 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Methé, B. A. et al. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967–1969 (2003).

    Article  PubMed  CAS  Google Scholar 

  105. Coby, A. J., Picardal, F., Shelobolina, E., Xu, H. & Roden, E. E. Repeated anaerobic microbial redox cycling of iron. Appl. Environ. Microbiol. 77, 6036–6042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heidelberg, J. F. et al. Genome sequence of the dissimilatory metal iron-reducing bacterium Shewanella oneidensis. Nature Biotech. 20, 1118–1123 (2002).

    Article  CAS  Google Scholar 

  107. Shi, L. et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ. Microbiol. Rep. 1, 220–227 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. DiChristina, T. J., Moore, C. M. & Haller, C. A. Dissimilatory Fe(III) and Mn(iv) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. J. Bacteriol. 184, 142–151 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Donald, J. W., Hicks, M. G., Richardson, D. J. & Palmer, T. The c-type cytochrome OmcA localizes to the outer membrane upon heterologous expression in Escherichia coli. J. Bacteriol. 190, 5127–5131 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lower, B. H. et al. Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 75, 2931–2935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reardon, C. L. et al. Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1. Geobiology 8, 56–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. White, G. F. et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc. Natl Acad. Sci. USA 110, 6346–6351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schuetz, B., Schicklberger, M., Kuermann, J., Spormann, A. M. & Gescher, J. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 75, 7789–7796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Qian, X. et al. Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. Biochim. Biophys. Acta 1807, 404–412 (2010).

    Article  CAS  Google Scholar 

  115. Malvankar, N. S. et al. Tunable metallic-like conductivity in microbial nanowire networks. Nature Biotechnol. 7, 573–579 (2011).

    Google Scholar 

  116. Leang, C., Qian, X., Mester, T. & Lovley, D. R. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl. Environ. Microbiol. 76, 4080–4084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Afkar, E., Reguera, G., Schiffer, M. & Lovley, D. R. A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(iv) oxides in Geobacter sulfurreducens. BMC Microbiol. 5, 41 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20 (2007). This work highlights the role of multihaem c -type cytochromes in bacterial electron transfer to solid metal oxides and hydroxides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Butler, J. E., Young, N. D. & Lovley, D. R. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11, 40 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Gray, H. B. & Winkler, J. R. Electron flow through proteins. Chem. Phys. Lett. 483, 1–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hernandez, M. E. & Newman, D. K. Extracellular electron transfer. Cell. Mol. Life. Sci. 58, 1562–1571 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010). This paper provides the first evidence that redox zones within natural systems are connected and influence one another by electron transport over centimetre distances.

    Article  CAS  PubMed  Google Scholar 

  123. von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008). References 123 and 124 demonstrate that the Fe( III )-reducing bacteria S. oneidensis MR-1 produces and secretes flavins that mediate extracellular electron transfer and therefore potentially facilitate the interaction between bacteria and their solid ferric substrate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nevin, K. P. & Lovley, D. R. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19, 141–159 (2002).

    Article  CAS  Google Scholar 

  126. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature. 435, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lies, D. P. et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71, 4414–4426 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rosso, K. M., Zachara, J. M., Fredrickson, J. K., Gorby, Y. A. & Smith, S. C. Nonlocal bacterial electron transfer to hematite surfaces. Geochim. Cosmochim. Acta 67, 1081–1087 (2003).

    Article  CAS  Google Scholar 

  130. Lohmayer, R., Kappler, A., Loesekann-Behrens, T. & Planer-Friedrich, B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl. Environ. Microbiol. 80, 3141–3149 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Snider, R. M., Strycharz-Glaven, S. M., Tsoi, S. D., Erickson, J. S. & Tender, L. M. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl Acad. Sci. USA 109, 15467–15472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kato, S., Hashimoto, K. & Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl Acad. Sci. USA 109, 10042–10046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996). This is the first publication to show the use of environmentally ubiquitous humic substances as electron acceptors and their importance to microbial Fe( III ) reduction.

    Article  CAS  Google Scholar 

  134. Jiang, J. & Kappler, A. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ. Sci. Technol. 42, 3563–3569 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Roden, E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geosci. 3, 417–421 (2010).

    Article  CAS  Google Scholar 

  136. Benz, M., Schink, B. & Brune, A. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 64, 4507–4512 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cervantes, F. J. et al. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ. Microbiol. 4, 51–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Coates, J. D. et al. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64, 1504–1509 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Piepenbrock, A., Behrens, S. & Kappler, A. Comparison of humic substance- and Fe(III)-reducing microbial communities in anoxic aquifers. Geomicrobiol. J. http://dx.doi.org/10.1080/01490451.2014.911994 (2014).

  140. Canfield, D. E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632 (1989).

    Article  CAS  PubMed  Google Scholar 

  141. Yao, W. & Millero, F. J. Oxidation of hydrogen sulphide by hydrous Fe(III) oxides in seawater. Mar. Chem. 52, 1–16 (1996).

    Article  CAS  Google Scholar 

  142. Porsch, K. & Kappler, A. FeII oxidation by molecular O2 during HCl extraction. Environ. Chem. 8, 190–197 (2011).

    Article  CAS  Google Scholar 

  143. Ishii, S. et al. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nature Commun. 4, 1601 (2013).

    Article  CAS  Google Scholar 

  144. Shrestha, P. M. et al. Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl. Environ. Microbiol. 79, 2397–2404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schmidt, C., Corbari, L., Gaill, F. & Le Bris, N. Biotic and abiotic controls on iron oxyhydroxide formation in the gill chamber of the hydrothermal vent shrimp Rimicaris exoculata. Geobiology 7, 454–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Cismasu, A. C., Michel, F. M., Tcaciuc, A. P., Tyliszczak, T. & Brown G. E. Jr. Composition and structural aspects of naturally occurring ferrihydrite. C. R. Geosci. 343, 210–218 (2011).

    Article  CAS  Google Scholar 

  147. Croal, L. R., Hao, Y., Kappler, A. & Newman, D. K. Phototrophic Fe(II) oxidation in an atmosphere of H2: implications for banded iron formations. Geobiology 7, 21–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hegler, F., Schmidt, C., Schwarz, H. & Kappler, A. Does a low-pH microenvironment around phototrophic FeII-oxidizing bacteria prevent cell encrustation by FeIII minerals? FEMS Microbiol. Ecol. 74, 592–600 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nature Rev. Microbiol. 8, 423–435 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding for several research grants from the German research Foundation (DFG), a Marie Curie ERG grant to C.S. (PERF04-GA-2008-239252), a Margarete von Wrangell grant to C.S. and a Landesgraduiertenfoerderung fellowship to E.D.M. (GZ l 1.2_7631.2/Melton). This study was also supported by the European Research Council under the European Union' s Seventh Framework Program (FP/2007–2013)/ERC Grant, agreement number 307320 — MICROFOX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kappler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fe speciation

Refers to the redox state of iron (Fe) and the identity of its ligands. The two most common environmental Fe redox species are Fe(II) and Fe(III).

Microaerophilic

A term used to describe microbial metabolism that requires oxygen (O2) concentrations to be very low; for example, microaerophilic ferrous iron Fe(II)-oxidizing bacteria function when the O2 concentration is below 50 μM.

Lithotrophic

A term used to describe microbial metabolism that uses inorganic substrates as electron donors.

Redoxclines

The interfaces between two spatially distinct areas that differ in chemical composition and redox potential; they are usually used to describe a transition from oxic to anoxic conditions.

c-type cytochromes

Small haem-containing proteins that have an important role in respiratory electron transfer reactions.

Reactive oxygen species

(ROS). Oxygen-containing species that have unpaired electrons, making them highly reactive towards transition metals such as iron and copper.

Heterogeneous Fe(II) oxidation

Oxidation of ferrous iron (Fe(II)), where dissolved Fe(II) is adsorbed to a mineral surface, which functions as a catalyst, and the oxidant is in a different physical phase; for example, dissolved oxygen.

Homogeneous Fe(II) oxidation

A chemical reaction in which both ferrous iron (Fe(II)) and the oxidant are in the same physical phase; for example, dissolved.

Two-line ferrihydrite

A nano-scale ferric iron (Fe(III)) oxyhydroxide mineral with an average primary crystallite size of 2–3 nm and a formula of Fe10O14(OH)2. Two-line refers to the two diffraction signals observed by X-ray diffraction.

Lepidocrocite

An orange-coloured FeOOH polymorph (γ-FeOOH); it is a ferric iron oxyhydroxide mineral.

Akaganeite

A FeOOH polymorph (β-FeOOH); it is a ferric iron oxyhydroxide mineral that is yellowish-brown in color and typically occurs in saline environments.

Goethite

An FeOOH polymorph (α-FeOOH); it is a ferric iron oxyhydroxide mineral. It is yellow to dark brown depending on the crystal size.

Colloids

Particles that are dispersed in a liquid or gas within a size fraction ranging from 1 nm to 1 μm in diameter.

Siderophores

Microbially produced organic molecules that are excreted in order to complex ferric iron (Fe(III)) ions, so the Fe can be taken up into the cells in a dissolved phase.

Comproportionation

A chemical reaction in which two reactants of the same element with a different oxidation state react to create a product with a single oxidation state.

Disproportionation

A chemical reaction in which a reactant is split into two species of the same chemical element with different oxidation states: one more oxidized and the other more reduced.

Mixotrophic

A term used to describe microbial metabolism that uses an organic substrate as a carbon source and an inorganic compound as electron donor.

Heterogeneous surface catalysis

A reaction in which the catalyst that facilitates the reaction of liquids or gases is present in the solid state.

Humic substances

(HumS). Organic molecules that are present in terrestrial and aquatic environments with a wide variety of structures that result from the degradation and polymerization of biopolymers, such as lignin, lipids, proteins, and polysaccharides. Diverse functional groups within the humic substance molecules are redox-active and have electron-donating or -accepting capacities.

Humic and fulvic acids

Humic acids are humic substances that are insoluble at low pH values, partially soluble at neutral pH and completely soluble at alkaline pH. Fulvic acids are humic substances that are soluble at all pH values.

First order kinetics

A term used to describe the kinetics of a reaction in which the concentration of one of the reactants is linearly related to the reaction rate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melton, E., Swanner, E., Behrens, S. et al. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12, 797–808 (2014). https://doi.org/10.1038/nrmicro3347

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing