Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The versatile bacterial type IV secretion systems

Key Points

  • Bacterial type IV secretion (T4S) systems are ancestrally related to conjugation systems. Present-day T4S systems can be subclassified into three groups: conjugation systems mediating the transfer of DNA and protein substrates through formation of stable mating junctions with recipient cells; DNA-uptake and -release systems that exchange DNA with the extracellular milieu; and effector translocator systems that deliver DNA and protein effector molecules to eukaryotic cells during the course of infection.

  • The conjugation systems of Gram-negative bacteria are composed of the coupling protein homomultimer and two substructures encoded by the mating-pair-formation (Mpf) proteins, a protein complex spanning the cell envelope and the conjugative pilus (T-pilus).

  • At the present time, investigators have identified the effector molecules of T4S systems for four pathogens: Agrobacterium tumefaciens, the causative agent of crown gall disease in plants; Helicobacter pylori, the causative agent of gastritis, peptic ulcers and gastric carcinomas in humans; Bordetella pertussis, the causative agent of whooping cough in humans; and Legionella pneumophila, the causative agent of Legionnaire's disease in humans.

  • T4S system effector translocation alters a wide range of cellular processes to aid the infection process. For example, Agrobacterium tumefaciens delivers oncogenic T-DNA and protein effectors (VirE2, VirE3 and VirF) that interact with plant cellular factors to ensure delivery of the T-DNA to the nucleus and its integration into the plant genome.

  • Helicobacter pylori uses the Cag T4S system to deliver CagA to mammalian cells where it is tyrosine phosphorylated by c-Src kinase. A complex network of interactions between CagAP-Tyr and cellular factors (for example, c-Src, SHP-2, c-MET) and between non-phosphorylated CagA (Grb2, JAM, Z0-1) alters signalling pathways, ultimately triggering cellular proliferation and differentiation and the onset of cancer.

  • The Bordetella pertussis Ptl system delivers its effector, the multisubunit pertussis toxin, to the extracellular milieu where, on contact with the mammalian cell membrane, the A subunit is internalized and exerts its effects by uncoupling G proteins from their receptors.

  • In striking contrast to the other systems described in the review, the intracellular pathogen L. pneumophila uses the Dot/Icm T4S system to inject effectors (DotA, LidA, RalF) into the phagosome to control biogenesis of the replicative vacuoule and to modulate the activities of host factors involved in vesicle traffic.

Abstract

Bacteria use type IV secretion systems for two fundamental objectives related to pathogenesis — genetic exchange and the delivery of effector molecules to eukaryotic target cells. Whereas gene acquisition is an important adaptive mechanism that enables pathogens to cope with a changing environment during invasion of the host, interactions between effector and host molecules can suppress defence mechanisms, facilitate intracellular growth and even induce the synthesis of nutrients that are beneficial to bacterial colonization. Rapid progress has been made towards defining the structures and functions of type IV secretion machines, identifying the effector molecules, and elucidating the mechanisms by which the translocated effectors subvert eukaryotic cellular processes during infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the different type-IV-dependent mechanisms.
Figure 2: Topologies of the VirB/D4 subunits of the A. tumefaciens type IV secretion (T4S) system.
Figure 3: Models of type IV secretion (T4S) system-mediated substrate translocation.
Figure 4: Schematic representation of the cellular consequences of type IV secretion (T4S) system effector translocation.

Similar content being viewed by others

References

  1. Cavelli-Sforza, L., Lederberg, J. & Lederberg. E. An infective factor controlling sex compatibility in B. coli. J. Gen. Microbiol. 8, 89–103 (1953).

    Google Scholar 

  2. Lawley, T. D., Klimke, W. A., Gubbins, M. J. & Frost, L. S. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224, 1–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Winans, S. C., Burns, D. L. & Christie, P. J. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 4, 64–68 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Censini, S. et al. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vogel, J. P., Andrews, H. L., Wong, S. K. & Isberg, R. R. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876 (1998). Reports the discovery of a type IV secretion system that is evolutionarily related to the IncI plasmids and functions dually in conjugative transfer and effector translocation.

    Article  CAS  PubMed  Google Scholar 

  6. Bacon, D. J. et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81–176. Infect. Immun. 68, 4384–4390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hofreuter, D., Odenbreit, S. & Haas, R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41, 379–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Dillard, J. P. & Seifert, H. S. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 41, 263–277 (2001). References 6–8 report the discoveries of new type IV translocation systems, herein termed the 'DNA uptake and release' subfamily.

    Article  CAS  PubMed  Google Scholar 

  9. Bundock, P., den Dulk Ras, A., Beijersbergen, A. & Hooykaas, P. J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bates, S., Cashmore, A. M. & Wilkins, B. M. IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae. J. Bacteriol. 180, 6538–6543 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, J. et al. The bases of crown gall tumorigenesis. J. Bacteriol. 182, 3885–3895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Waters, V. L. Conjugation between bacterial and mammalian cells. Nature Genet. 29, 375–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Grohmann, E., Muth, G. & Espinosa, M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 277–301 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de la Cruz, I. & Davies, J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 8, 128–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ghigo, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Schlievert, P. M. et al. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect. Immun. 66, 218–223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bacon, D. J. et al. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81–176. Infect. Immun. 70, 6242–6250 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hofreuter, D., Odenbreit, S., Puls, J., Schwan, D. & Haas, R. Genetic competence in Helicobacter pylori: mechanisms and biological implications. Res. Microbiol. 151, 487–491 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hamilton, H. L., Schwartz, K. J. & Dillard, J. P. Insertion-duplication mutagenesis of Neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J. Bacteriol. 183, 4718–4726 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, I. & Dubnau, D. DNA transport during transformation. Front. Biosci. 8, S544–S556 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Blocker, A., Komoriya, K. & Aizawa, S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl Acad. Sci. USA 100, 3027–3030 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Christie, P. J. The Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J. Bacteriol. 179, 3085–3094 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hilbi, H., Segal, G. & Shuman, H. A. Icm/Dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol. Microbiol. 42, 603–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Schmiederer, M., Arcenas, R., Widen, R., Valkov, N. & Anderson, B. Intracellular induction of the Bartonella henselae virB operon by human endothelial cells. Infect. Immun. 69, 6495–6502 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boschiroli, M. L. et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl Acad. Sci. USA 99, 1544–1549 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seubert, A., Hiestand, R., de la Cruz, F. & Dehio, C. A bacterial conjugation machinery recruited for pathogenesis. Mol. Microbiol. 49, 1253–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Rouot, B. et al. Production of the type IV secretion system differs among Brucella species as revealed with VirB5- and VirB8-specific antisera. Infect. Immun. 71, 1075–1082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baron, C., O'Callaghan, D. & Lanka, E. Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol. Microbiol. 43, 1359–1365 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Llosa, M., Gomis-Ruth, F. X., Coll, M. & de la Cruz, F. Bacterial conjugation: a two-step mechanism for DNA transport. Mol. Microbiol. 45, 1–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Gomis-Ruth, F. X. & Coll, M. Structure of TrwB, a gatekeeper in bacterial conjugation. Int. J. Biochem. Cell Biol. 33, 839–843 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gomis-Ruth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001). Reports the first structure of a coupling protein, a hexameric F1-ATPase-like multimer that is highly indicative of a translocase function.

    Article  CAS  PubMed  Google Scholar 

  32. Hormaeche, I. et al. Purification and properties of TrwB, a hexameric, ATP-binding integral membrane protein essential for R388 plasmid conjugation. J. Biol. Chem. 277, 46456–46462 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Errington, J., Bath, J. & Wu, L. J. DNA transport in bacteria. Nature Rev. Mol. Cell Biol. 2, 538–545 (2001).

    Article  CAS  Google Scholar 

  34. Schroder, G. et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates? J. Bacteriol. 184, 2767–2779 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilmour, M. W., Gunton, J. E., Lawley, T. D. & Taylor, D. E. Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol. Microbiol. 49, 105–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Llosa, M., Zunzunegui, S. & de la Cruz, F. Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc. Natl Acad. Sci. USA 100, 10465–10470 ( 2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar, R. B. & Das, A. Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol. Microbiol. 43, 1523–1532 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ding, Z. et al. A novel cytology-based, two-hybrid screen for bacteria applied to protein–protein interaction studies of a type IV secretion system. J. Bacteriol. 184, 5572–5582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atmakuri, K., Ding, Z. & Christie, P. J. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at the cell poles of Agrobacterium tumefaciens. Mol. Microbiol. 49, 1699–1713 (2003). Reports the first direct evidence for recruitment of a protein effector to a coupling protein, supporting a proposal that the coupling proteins function as general recruitment factors for type IV secretion substrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vergunst, A. C. et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979–982 (2000). This elegant study supplied the first incontrovertible evidence for protein trafficking by the A. tumefaciens VirB/D4 type IV secretion system.

    Article  CAS  PubMed  Google Scholar 

  41. Simone, M., McCullen, C. A., Stahl, L. E. & Binns, A. N. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol. Microbiol. 41, 1283–1293 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Schrammeijer, B., den Dulk-Ras A, Vergunst, A. C., Jurado Jacome, E. & Hooykaas, P. J. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucl. Acids Res. 31, 860–868 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Selbach, M., Moese, S., Meyer, T. F. & Backert, S. Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect. Immun. 70, 665–667 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Conover, G. M., Derre, I., Vogel, J. P. & Isberg, R. R. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol. Microbiol. 48, 305–321 (2003). Describes the discovery of a novel effector, LidA, that is required for elaboration of the L. pneumophila Dot/Icm complex in the bacterium and, on translocation, functions in vesicle recruitment during biogenesis of the replication vacuole.

    Article  CAS  PubMed  Google Scholar 

  45. Burns, D. L. Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 6, 29–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. O'Callaghan, D. et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 33, 1210–1220 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Lai, E. M. & Kado, C. I. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol. 8, 361–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Eisenbrandt, R. et al. Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J. Biol. Chem. 274, 22548–22555 (1999). Provides evidence that the pilin subunits of the A. tumefaciens VirB/D4 and the plasmid RP4 Tra systems undergo head-to-tail cyclization during maturation, a completely new reaction in bacteria.

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt-Eisenlohr, H. et al. Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J. Bacteriol. 181, 7485–7492 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sagulenko, V., Sagulenko, E., Jakubowski, S., Spudich, E. & Christie, P. J. VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J. Bacteriol. 183, 3642–3651 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baron, C., Llosa, M., Zhou, S. & Zambryski, P. C. VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1*. J. Bacteriol. 179, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berger, B. R. & Christie, P. J. Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J. Bacteriol. 176, 3646–3660 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar, R. B., Xie, Y. H. & Das, A. Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol. Microbiol. 36, 608–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Das, A., Anderson, L. B. & Xie, Y. H. Delineation of the interaction domains of Agrobacterium tumefaciens VirB7 and VirB9 by use of the yeast two-hybrid assay. J. Bacteriol. 179, 3404–3409 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beauprè, C. E., Bohne, J., Dale, E. M. & Binns, A. N. Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J. Bacteriol. 179, 78–89 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Das, A. & Xie, Y. -H. The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J. Bacteriol. 182, 758–763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ward, D. V., Draper, O., Zupan, J. R. & Zambryski, P. C. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc. Natl Acad. Sci. USA 99, 11493–11500 (2002). Reports a comprehensive linkage map of the VirB proteins by yeast dihybrid screens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Krall, L. et al. Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 99, 11405–11410 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jakubowski, S. J., Krishnamoorthy, V. & Christie, P. J. Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J. Bacteriol. 185, 2867–2878 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rambow-Larsen, A. A. & Weiss, A. A. The PtlE protein of Bordetella pertussis has peptidoglycanase activity required for Ptl-mediated pertussis toxin secretion. J. Bacteriol. 184, 2863–2869 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farizo, K. M., Cafarella, T. G. & Burns, D. L. Evidence for a ninth gene, ptlI, in the locus encoding the pertussis toxin secretion system of Bordetella pertussis and formation of a PtlI–PtlF complex. J. Biol. Chem. 271, 31643–31649 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Harris, R. L., Hombs, V. & Silverman, P. M. Evidence that F-plasmid proteins TraV, TraK and TraB assemble into an envelope-spanning structure in Escherichia coli. Mol. Microbiol. 42, 757–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Z. & Binns, A. N. Functional subsets of the VirB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J. Bacteriol. 185, 3259–3269 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503–2508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yeo, H. -J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV system. Mol. Cell 6, 1461–1472 (2000). Reports the first structure of a member of the VirB11 superfamily of traffic ATPases.

    Article  CAS  PubMed  Google Scholar 

  66. Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rabel, C., Grahn, A. M., Lurz, R. & Lanka, E. The VirB4 family of proposed traffic nucleoside triphosphatases: Common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J. Bacteriol. 185, 1045–1058 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dang, T. A., Zhou, X. -R., Graf, B. & Christie, P. J. Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on assembly and function of the T-DNA transporter. Mol. Microbiol. 32, 1239–1251 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sagulenko, Y., Sagulenko, V., Chen, J. & Christie, P. J. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J. Bacteriol. 183, 5813–5825 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rohde, M., Puls, J., Buhrdorf, R., Fischer, W. & Haas, R. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol. Microbiol. 49, 219–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Tanaka, J., Suzuki, T., Mimuro, H. & Sasakawa, C. Structural definition on the surface of Helicobacter pylori type IV secretion apparatus. Cell. Microbiol. 5, 395–404 (2003). References 70 and 71 report that the Cag type IV secretion system elaborates new sheathed surface structures that contribute to H. pylori pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  72. Schulein, R. & Dehio, C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol. Microbiol. 46, 1053–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Watarai, M., Andrews, H. L. & Isberg, R. Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol. Microbiol. 39, 313–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Farizo, K. M., Fiddner, S., Cheung, A. M. & Burns, D. L. Membrane localization of the S1 subunit of pertussis toxin in Bordetella pertussis and implications for pertussis toxin secretion. Infect. Immun. 70, 1193–1201 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grahn, A. M., Haase, J., Bamford, D. H. & Lanka, E. Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: implications for related macromolecule transport systems. J. Bacteriol. 182, 1564–1574 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pantoja, M., Chen, L., Chen, Y. & Nester, E. W. Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol. Microbiol. 45, 1325–1335 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Galan, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Ward, D. V. & Zambryski, P. C. The six functions of Agrobacterium VirE2. Proc. Natl Acad. Sci. USA 98, 385–386 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deng, W. et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc. Natl Acad. Sci. USA 95, 7040–7045 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gelvin, S. B. Agrobacterium-mediated plant transformation: the biology behind the 'gene-jockeying' tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tzfira, T. & Citovsky, V. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 12, 121–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Zhu, Y. et al. Identification of Arabidopsis rat mutants. Plant Physiol. 132, 494–505 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roberts, R. L. et al. Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc. Natl Acad. Sci. USA 100, 6634–6639 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Segal, E., Cha, J., Lo, J., Falkow, S. & Tompkins, L. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA 96, 14559–14564 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hatakeyama, M. Helicobacter pylori CagA — a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect. 5, 143–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Asahi, M. et al. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191, 593–602 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stein, M., Rappuoli, R. & Covacci, A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl Acad. Sci. USA 97, 1263–1268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Stein, M. et al. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol. 43, 971–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Backert, S. et al. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell. Microbiol. 2, 155–164 (2000). References 84, 86, 87, 88 and 90 report the first evidence for CagA translocation and subsequent phosphorylation in human cells.

    Article  CAS  PubMed  Google Scholar 

  91. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F. & Backert, S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277, 6775–6778 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Churin, Y. et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J. Cell Biol. 161, 249–255 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mimuro, H. et al. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol. Cell 10, 745–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003). Shows that non-phosphorylated CagA induces formation of an aberrant apical-junction protein complex, resulting in loss of cell polarity, proliferation and differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fischer, W. et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337–1348 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Stein, P. E. et al. The crystal structure of pertussis toxin. Structure 2, 45–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Albert, P. R. & Robillard, L. G-protein specificity: traffic direction required. Cell Signal. 14, 407–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Vogel, J. P. & Isberg, R. R. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2, 30–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Swanson, M. S. & Sturgill-Koszycki, S. Exploitation of macrophages as a replication niche by Legionella pneumophila. Trends Microbiol. 8, 47–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Segal, G., Purcell, M. & Schuman, H. A. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl Acad. Sci. USA 95, 1669–1674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Segal, G. & Shuman, H. A. Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol. Microbiol. 30, 197–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Nagai, H. & Roy, C. R. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20, 5962–5970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Boschiroli, M. L. et al. Type IV secretion and Brucella virulence. Vet. Microbiol. 90, 341–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Novak, K. F., Dougherty, B. & Pelaez, M. Actinobacillus actinomycetemcomitans harbours type IV secretion system genes on a plasmid and in the chromosome. Microbiology 147, 3027–3035 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Ohashi, N., Zhi, N., Lin, Q. & Rikihisa, Y. Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect. Immun. 70, 2128–2138 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Masui, S., Sasaki, T. & Ishikawa, H. Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J. Bacteriol. 182, 6529–6531 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Bhattacharyya, A. et al. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proc. Natl Acad. Sci. USA 99, 12403–12408 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zusman, T., Yerushalmi, G. & Segal, G. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect. Immun. 71, 3714–3723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Burghdorf, R., Forster, C., Haas, R. & Fischer, W. Topological analysis of a putative VirB8 homologue essential for the cag type IV secretion system in Helicobacter pylori. Int. J. Med. Microbiol. 293, 213–217 (2003).

    Article  Google Scholar 

  113. Cao, T. B. & Saier, M. H. Jr. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints, and evolutionary conclusions. Microbiology 147, 3201–3214 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this review to Brian Wilkins in loving memory. We apologize for any omissions in citation of primary reports owing to space limitations. We thank members of the laboratory for helpful comments and critical appraisals of this manuscript. We also gratefully acknowledge the National Institutes of Health for supporting our studies of the Agrobacterium VirB/D4 T4S system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Christie.

Related links

Related links

DATABASES

Entrez

HP0527

HP0528

HP0532

Protein Data Bank

HP0525

TrwB

SwissProt

ARF1

JAM

VirB1

VirB11

VirD4

FURTHER INFORMATION

Peter J. Christie's laboratory

World Health Organization

Glossary

TYPE IV SECRETION (T4S) APPARATUS OR SYSTEM

A bacterial organelle that is ancestrally related to a conjugation machine that translocates DNA or protein substrates across the cell envelope, often for purposes associated with pathogenesis. Other bacterial translocation systems include the type II secretion (T2S) machines that deliver protein substrates across the outer membrane and the type III secretion (T3S) machines that translocate effectors in one step across the cell envelope through a structure that is ancestrally related to the bacterial flagellum. Like the T4S systems, the T3S systems elaborate syringe- or pilus-like surface organelles and deliver effector proteins to plant and mammalian cells during infection.

CONJUGATION

A mechanism for transfer of a DNA substrate from a bacterial donor cell to a recipient cell by direct cell-to-cell contact.

PILUS

A filamentous organelle that extends from the surface of the bacterial cell. Composed of pilin subunits, these structures mediate attachment to target cells or inert matter. They might also participate directly in the delivery of secretion substrates to target cells.

COMPETENCE

The ability of a bacterial cell to import exogenous DNA and stably incorporate it into the bacterial genome.

PERIPLASM

An aqueous compartment between the inner and outer membranes of Gram-negative bacteria.

CHAPERONE

A protein or protein complex that participates in folding or unfolding of protein substrates. Secretion chaperones prevent their substrates from aggregating or interacting prematurely with other substrates or cellular factors. They might also mediate the delivery of substrates to a secretory apparatus.

SECRETION SIGNAL

A motif that confers recognition of a protein that is destined for export by a cognate secretory apparatus.

GENERAL SECRETORY PATHWAY

(GSP). The main pathway used for delivery of protein substrates into or across the bacterial inner membrane.

INTERLEUKIN-8

(IL-8). A peptide that is produced by epithelial cells and is an indicator of infection. IL-8 secretion is induced by pathogens preceding clinical complications.

TRANSGLYCOSYLASE

A protein, the enzymatic activity of which degrades peptidoglycan. These proteins participate in assembly of supramolecular transenvelope structures by 'punching' holes in the peptidoglycan.

PEPTIDOGLYCAN

A shape-determining polymer that is present within the periplasm of Gram-negative bacteria.

SECRETIN

A protein that forms oligomeric pores to allow the passage of macromolecular substrates across the outer membrane.

KARYOPHERIN

These proteins have a central role in nuclear import processes, mediating substrate recognition and release at the nuclear-pore complex by GTP-hydrolysis-dependent reactions.

CORTACTIN

Cortactin is an actin-binding protein, regulated by the membrane-associated c-Src kinase. Cortactin transduces signals from the cell surface to the cytoskeleton.

ACTIN

A eukaryotic protein that polymerizes to form microfilaments. Microfilaments have a dual role, acting as a passive structural complex that maintains cell shape and anchors cytoskeletal proteins, and an active function for the transport of vesicles and organelles that can result in cell movement.

APICAL JUNCTION

Apical junctions consist of protein complexes that join the actin cytoskeleton to the apical pole of epithelial cells. Adherent junctions have pivotal roles in cell organization by mediating cell adhesion and signalling.

ADP RIBOSYLATION FACTOR

(ARF). The ADP-ribosylation factor family of small GTP-binding proteins is involved in the regulation of membrane traffic (vesicular transport) and in the control of the actin cytoskeleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascales, E., Christie, P. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1, 137–149 (2003). https://doi.org/10.1038/nrmicro753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing