Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases

Key Points

  • Two of the best characterized progeroid syndromes are Werner syndrome and Hutchinson–Gilford progeria syndrome (HGPS). The genes targeted for mutation in these diseases (WRN and LMNA, respectively) have been identified.

  • WRN encodes a RecQ helicase and functions in homology-dependent recombination and telomere metabolism. Defective regulation of either of these fundamental nuclear processes could underlie disease.

  • LMNA encodes A-type nuclear lamins, which are targets for mutations in several human genetic diseases, known as laminopathies.

  • Specific mutations in LMNA, many of which affect farnesylation of the C terminus of lamin A, function dominantly to give rise to HGPS. Farnesylation inhibitors effectively suppress disease phenotypes in mouse models of HGPS.

  • It remains unclear whether common mechanisms underlie the progeroid syndromes and whether these mechanisms contribute significantly to the normal ageing process.

Abstract

Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson–Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WRN function and disease pathogenesis.
Figure 2: The maturation of lamin A.
Figure 3: Model for the pathogenesis of HGPS in the presence of progerin.

Similar content being viewed by others

References

  1. Martin, G. M. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects Orig. Artic. Ser. 14, 5–39 (1978).

    CAS  PubMed  Google Scholar 

  2. Friedberg, E. C. et al. DNA Repair and Mutagenesis (ASM Press, Washington, 2006).

    Google Scholar 

  3. Werner, O. in Werner's Syndrome and Human Aging (eds Salk, D., Fujiwara, Y. & Martin, G. M.) 1–14 (Plenum Press, New York, 1985).

    Book  Google Scholar 

  4. Epstein, C. J., Martin, G. M., Schultz, A. L. & Motulsky, A. G. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45, 177–221 (1966). Comprehensive description of clinical, pathological, cellular and genetic features of Werner syndrome.

    Article  CAS  Google Scholar 

  5. Tollefsbol, T. O. & Cohen, H. J. Werner's syndrome: an underdiagnosed disorder resembling premature aging. Age 7, 75–88 (1984).

    Article  Google Scholar 

  6. Goto, M. Hierarchical deterioration of body systems in Werner's syndrome: implications for normal ageing. Mech. Ageing Dev. 98, 239–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, S. et al. The spectrum of WRN mutations in Werner syndrome patients. Hum. Mutat. 27, 558–567 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goto, M. Clinical characteristics of Werner syndrome and other premature aging syndromes: pattern of aging in progeroid syndromes. Gann. Monograph. Cancer Res. 49, 27–39 (2001).

    Google Scholar 

  9. Uhrhammer, N. A. et al. Werner syndrome and mutations of the WRN and LMNA genes in France. Hum. Mutat. 27, 718–719 (2006).

    Article  PubMed  Google Scholar 

  10. Yu, C. E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Bachrati, C. Z. & Hickson, I. D. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J. 374, 577–606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Opresko, P. L., Cheng, W. H. & Bohr, V. A. Junction of RecQ helicase biochemistry and human disease. J. Biol. Chem. 279, 18099–18102 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Goto, M. et al. Immunological diagnosis of Werner syndrome by down-regulated and truncated gene products. Hum. Genet. 105, 301–307 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Moser, M. J. et al. WRN helicase expression in Werner syndrome cell lines. Nucleic Acids Res. 28, 648–654 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawabe, T. et al. Differential regulation of human RecQ family helicases in cell transformation and cell cycle. Oncogene 19, 4764–4772 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Swanson, C., Saintigny, Y., Emond, M. J. & Monnat, R. J. Jr. The Werner syndrome protein has separable recombination and survival functions. DNA Repair (Amst) 3, 475–482 (2004).

    Article  CAS  Google Scholar 

  17. Moser, M. J. et al. Genetic instability and hematologic disease risk in Werner syndrome patients and heterozygotes. Cancer Res. 60, 2492–2496 (2000).

    CAS  PubMed  Google Scholar 

  18. Ogburn, C. E. et al. An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum. Genet. 101, 121–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Poot, M. et al. Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J. 15, 1224–1226 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Schellenberg, G. D., Miki, T. Yu, C. E. & Nakura, J. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 785–797 (McGraw-Hill, New York, 2001).

    Google Scholar 

  21. Agrelo, R. et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl Acad. Sci. USA 103, 8822–8827 (2006). Recent evidence that epigenetic silencing of WRN expression confers cellular phenotypes similar to WRN mutations, and that WRN silencing in colon cancers might have prognostic significances.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goto, M., Miller, R. W., Ishikawa, Y. & Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomarkers Prev. 5, 239–246 (1996).

    CAS  PubMed  Google Scholar 

  23. Mushegian, A. R., Bassett, D. E. Jr, Boguski, M. S., Bork, P. & Koonin, E. V. Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs. Proc. Natl Acad. Sci. USA 94, 5831–5836 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mian, I. S. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res. 25, 3187–3195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prince, P. R., Emond, M. J. & Monnat, R. J. Jr. Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev. 15, 933–938 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saintigny, Y., Makienko, K., Swanson, C., Emond, M. J. & Monnat, R. J. Jr. Homologous recombination resolution defect in Werner syndrome. Mol. Cell. Biol. 22, 6971–6978 (2002). References 25 and 26 identify a role for WRN in homology-dependent recombination in human somatic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stewart, E., Chapman, C. R., Al-Khodairy, F., Carr, A. M. & Enoch, T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16, 2682–2692 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pichierri, P., Franchitto, A., Mosesso, P. & Palitti, F. Werner's syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol. Biol. Cell 12, 2412–2421 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Opresko, P. L. et al. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol. Cell 14, 763–774 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nature Genet. 36, 877–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Du, X. et al. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol. Cell. Biol. 24, 8437–8446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crabbe, L., Verdun, R. E., Haggblom, C. I. & Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306, 1951–1953 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Laud, P. R. et al. Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev. 19, 2560–2570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crabbe, L., Jauch, A., Naeger, C. M., Holtgreve-Grez, H. & Karlseder, J. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc. Natl Acad. Sci. USA 104, 2205–2210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Opresko, P. L. et al. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J. Biol. Chem. 280, 32069–32080 (2005). References 29–35 identify a role for WRN in telomere maintenance in human somatic cells and in Wrn -deficient mice.

    Article  CAS  PubMed  Google Scholar 

  36. Eller, M. S. et al. A role for WRN in telomere-based DNA damage responses. Proc. Natl Acad. Sci. USA 103, 15073–15078 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai, Y. & Murnane, J. P. Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein. Hum. Genet. 113, 337–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Monnat, R. J., Jr & Saintigny, Y. Werner syndrome protein — unwinding function to explain disease. Sci. Aging Knowledge Environ. 2004, re3 (2004).

    Article  PubMed  Google Scholar 

  39. Dhillon, K. K. et al. Functional role of the Werner syndrome RecQ helicase in human fibroblasts. Aging Cell 6, 53–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kipling, D., Davis, T., Ostler, E. L. & Faragher, R. G. What can progeroid syndromes tell us about human aging? Science 305, 1426–1431 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Frank, S. A. & Nowak, M. A. Problems of somatic mutation and cancer. Bioessays 26, 291–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Lombard, D. B. et al. Mutations in the Wrn gene in mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20, 3286–3291 (2000). Initial description of the generation and characterization of a Wrn -deficient mouse model that recapitulates the genetic and biochemical defects observed in cells from patients with WS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lebel, M. & Leder, P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc. Natl Acad. Sci. USA 95, 13097–13102 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, L. et al. Cellular Werner phenotypes in mice expressing a putative dominant-negative human WRN gene. Genetics 154, 357–362 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hennekam, R. C. Hutchinson–Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. A 140, 2603–2624 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hutchinson, J. Congenital absense of hair and mammary glands with atrophic condition of the skin and its appendages. Trans Med. Chir. Soc. Edinburgh 69, 473–477 (1886).

    Article  CAS  Google Scholar 

  48. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. De Sandre-Giovannoli, A. et al. Lamin a truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Cao, H. & Hegele, R. A. LMNA is mutated in Hutchinson–Gilford progeria (MIM 176670) but not in Wiedemann–Rautenstrauch progeroid syndrome (MIM 264090). J. Hum. Genet. 48, 271–274 (2003). References 48–50 describe the initial identification of LMNA as the gene that is mutated in HGPS.

    Article  CAS  PubMed  Google Scholar 

  51. Verstraeten, V. L. et al. Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin A accumulation. Hum. Mol. Genet. 15, 2509–2522 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. McKeon, F. D., Kirschner, M. W. & Caput, D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319, 463–468 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Stuurman, N., Heins, S. & Aebi, U. Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol. 122, 42–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Bridger, J. M., Kill, I. R., O'Farrell, M. & Hutchison, C. J. Internal lamin structures within G1 nuclei of human dermal fibroblasts. J. Cell Sci. 104, 297–306 (1993).

    CAS  PubMed  Google Scholar 

  55. Kennedy, B. K., Barbie, D. A., Classon, M., Dyson, N. & Harlow, E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 14, 2855–2868 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spann, T. P., Goldman, A. E., Wang, C., Huang, S. & Goldman, R. D. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J. Cell. Biol. 156, 603–608 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ivorra, C. et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev. 20, 307–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frock, R. L. et al. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 20, 486–500 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nitta, R. T., Jameson, S. A., Kudlow, B. A., Conlan, L. A. & Kennedy, B. K. Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol. Cell. Biol. 26, 5360–5372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, E. D., Kudlow, B. A., Frock, R. L. & Kennedy, B. K. A-type nuclear lamins, progerias and other degenerative disorders. Mech. Ageing Dev. 126, 447–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nikolova, V. et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113, 357–369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Sandre-Giovannoli, A. et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot–Marie–Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70, 726–736 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, L. et al. LMNA mutations in atypical Werner's syndrome. Lancet 362, 440–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Rusinol, A. E. & Sinensky, M. S. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J. Cell Sci. 119, 3265–3272 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet. 31, 94–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Dahl, K. N. et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 103, 10271–10276 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nature Med. 11, 440–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, B. et al. Genomic instability in laminopathy-based premature aging. Nature Med. 11, 780–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006). Evidence that the mechanisms that underlie HGPS might also have a role in normal human ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bergo, M. O. et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad. Sci. USA 99, 13049–13054 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, S. H. et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J. Clin. Invest. 116, 2115–2121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, S. H. et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson–Gilford progeria syndrome mutation. Proc. Natl Acad. Sci. USA 102, 10291–10296 (2005). Reference 73, as well as 87 and 88, describe the three mouse models of HGPS that have been generated by mutating or altering Lmna expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fong, L. G. et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311, 1621–1623 (2006). References 72 and 74 demonstrate that FTIs markedly reduce the disease phenotypes in mouse models of HGPS.

    Article  CAS  PubMed  Google Scholar 

  75. Mallampalli, M. P., Huyer, G., Bendale, P., Gelb, M. H. & Michaelis, S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 102, 14416–14421 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Glynn, M. W. & Glover, T. W. Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet. 14, 2959–2969 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Toth, J. I. et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc. Natl Acad. Sci. USA 102, 12873–12878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Capell, B. C. et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 102, 12879–12884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 101, 8963–8968 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Delbarre, E. et al. The truncated prelamin A in Hutchinson–Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Hum. Mol. Genet. 15, 1113–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Huang, S. et al. Correction of cellular phenotypes of Hutchinson–Gilford progeria cells by RNA interference. Hum. Genet. 118, 444–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Csoka, A. B. et al. Genome-scale expression profiling of Hutchinson–Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3, 235–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Sephel, G. C., Sturrock, A., Giro, M. G. & Davidson, J. M. Increased elastin production by progeria skin fibroblasts is controlled by the steady-state levels of elastin mRNA. J. Invest. Dermatol. 90, 643–647 (1988).

    Article  CAS  PubMed  Google Scholar 

  85. Lemire, J. M. et al. Aggrecan expression is substantially and abnormally upregulated in Hutchinson–Gilford progeria syndrome dermal fibroblasts. Mech. Ageing Dev. 127, 660–669 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423, 298–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Varga, R. et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 103, 3250–3255 (2006).H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fong, L. G. et al. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Invest. 116, 743–752 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Miller, R. A. 'Accelerated aging': a primrose path to insight? Aging Cell 3, 47–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Martin, G. M. Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120, 523–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. van der Pluijm, I. et al. Genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biology 5, e2 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Monnat, R. J. Jr. From broken to old: DNA damage, IGF1endocrine suppression and aging. DNA Repair (in the press).

  95. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Kamath-Loeb, A. S., Welcsh, P., Waite, M., Adman, E. T. & Loeb, L. A. The enzymatic activities of the Werner syndrome protein are disabled by the amino acid polymorphism R834C. J. Biol. Chem. 279, 55499–55505 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Davis, T., Baird, D. M., Haughton, M. F., Jones, C. J. & Kipling, D. Prevention of accelerated cell aging in Werner syndrome using a p38 mitogen-activated protein kinase inhibitor. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1386–1393 (2005).

    Article  PubMed  Google Scholar 

  98. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Coppe, J. P., Kauser, K., Campisi, J. & Beausejour, C. M. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Csoka, A. B. et al. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J. Med. Genet. 41, 304–308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Plasilova, M. et al. Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson–Gilford progeria syndrome. J. Med. Genet. 41, 609–614 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Novelli, G. et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am. J. Hum. Genet. 71, 426–431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Garg, A., Cogulu, O., Ozkinay, F., Onay, H. & Agarwal, A. K. A novel homozygous Ala529Val LMNA mutation in Turkish patients with mandibuloacral dysplasia. J. Clin. Endocrinol. Metab. 90, 5259–5264 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Navarro, C. L. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13, 2493–2503 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Agarwal, A. K., Fryns, J. P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Navarro, C. L. et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum. Mol. Genet. 14, 1503–1513 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Fukuchi, K. et al. LMNA mutation in a 45 year old Japanese subject with Hutchinson–Gilford progeria syndrome. J. Med. Genet. 41, e67 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cao, K. et al. A lamin A isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc. Natl Acad. Sci. USA 104, 4949–4954 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dechat, T. et al. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc. Natl Acad. Sci. USA 104, 4955–4960 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.A.K. was supported in part by a National Institute of General Medical Science grant. Lamin-related research in the laboratory of B.K.K. is supported by a National Institutes of Health grant. This work was supported by grants from National Cancer Institute and the Nippon Boehringer Ingelheim Virtual Research Institute on Aging to R.J.M.Jr.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brian K. Kennedy or Raymond J. Monnat Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Ataxia-telangiectasia

Down syndrome

Hutchinson–Gilford progeria syndrome

Werner syndrome

FURTHER INFORMATION

Ray Monnat's laboratory

Leiden Muscular Dystrophy pages

Locus-Specific Mutational Database

Online Mendelian Inheritance in Man

SNP linked to WRN

The LMNA mutation database

Werner Syndrome International Registry

Glossary

RecQ helicase

A protein with a domain that contains sequence and structural homology to the Escherichia coli RecQ helicase. Human RecQ helicase proteins include WRN, BLM and REQ4.

Homology-dependent recombination

A potentially error-free DNA-repair pathway in which DNA double-strand breaks are repaired by limited DNA synthesis off a second, undamaged DNA molecule (for example, a sister chromatid) followed by resolution and religation of strand breaks.

Senescence

A state of permanent cell-cycle exit that often occurs as a result of a cell exhausting its replicative potential. It can also result from cellular stresses or activation of oncogenes.

Non-homologous DNA-end joining

A DNA-repair pathway that can operate in all phases of the cell cycle and that does not require the presence of a homologous DNA-repair template to repair DNA double-strand breaks.

Base-excision repair

A DNA-repair pathway that selectively identifies and replaces single DNA bases that have been chemically damaged.

Mesenchymal cell lineage

Cell lineages that are derived from the mesodermal germ layer. Includes many cell types that are found in connective tissue and other supporting, conducting or blood-forming lineages of the body.

Nuclear lamina

The proteinacious meshwork that underlies the inner nuclear membrane.

Neomorphic allele

An allele of a gene that confers to the encoded gene product a new activity not normally found in the product encoded by the wild-type allele.

Hypermorphic allele

An allele of a gene that confers to the encoded gene product an increase in the activity that is normally associated with the product encoded by the wild-type allele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudlow, B., Kennedy, B. & Monnat, R. Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8, 394–404 (2007). https://doi.org/10.1038/nrm2161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing