Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Regulated exocytosis: new organelles for non-secretory purposes

Abstract

Regulated exocytosis is a process in which the membranes of cytoplasmic organelles fuse with the plasma membrane in response to stimulation. In many cases (secretory exocytoses), the process functions to secrete specific products that are segregated in the organelle lumen (for example, neurotransmitters, hormones and enzymes) to the extracellular space. In other cases ('non-secretory exocytoses'), it functions to transfer the organelle membrane and its components to the cell surface. Here, the general properties of non-secretory exocytoses are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various types of secretory exocytosis.
Figure 2: The non-secretory, exocytic translocation of membrane proteins.
Figure 3: The non-secretory, exocytic translocation of membrane patches.

Similar content being viewed by others

References

  1. Palade, G. E. Functional changes in the structure of cell components. in Subcellular Particles. (ed. T. Hayashi) 64–83 (The Ronald Press Company, New York, 1959).

    Google Scholar 

  2. Jahn, R. & Sudhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  Google Scholar 

  3. Burgoyne, R. D. & Morgan, A. Secretory granule exocytosis. Physiol. Rev. 83, 581–632 (2003).

    Article  CAS  Google Scholar 

  4. Amsterdam, A., Ohad, I. & Schramm, M. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J. Cell Biol. 41, 753–773 (1969).

    Article  CAS  Google Scholar 

  5. Palade, G. E. Intracellular aspects of the process of protein secretion. Science 189, 347–358 (1975).

    Article  CAS  Google Scholar 

  6. Slepnev, V. I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  7. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  8. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    Article  CAS  Google Scholar 

  9. Wan, Q. et al. Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388, 686–690 (1997).

    Article  CAS  Google Scholar 

  10. Chou, C. L. et al. Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J. Biol. Chem. 275, 36839–36846 (2000).

    Article  CAS  Google Scholar 

  11. Kawanishi, M. et al. Role of SNAP23 in insulin-induced translocation of GLUT4 in 3T3-L1 adipocytes. Mediation of complex formation between syntaxin4 and VAMP2. J. Biol. Chem. 275, 8240–8247 (2000).

    Article  CAS  Google Scholar 

  12. Bezzerides, V. J., Ramsey, I. S., Kotecha, S., Greka, A. & Clapham, D. E. Rapid vesicular translocation and insertion of TRP channels. Nature Cell Biol. 6, 709–720 (2004).

    Article  CAS  Google Scholar 

  13. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  14. Xiao, M. Y., Wasling, P., Hanse, E. & Gustafsson, B. Creation of AMPA-silent synapses in the neonatal hippocampu. Nature Neurosci. 7, 236–243 (2004).

    Article  CAS  Google Scholar 

  15. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neurosci. 4, 917–926 (2001).

    Article  CAS  Google Scholar 

  16. Park, M., Penick, E. C., Edwards, J. G., Kauer, J. A. & Ehlers, M. D. Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972–1975 (2004).

    Article  CAS  Google Scholar 

  17. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  18. Lan, J. Y. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neurosci. 4, 382–390 (2001).

    Article  CAS  Google Scholar 

  19. Morenilla-Palao, C., Planells-Cases, R., Garcia-Sanz, N. & Ferrer-Montiel, A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem. 279, 25665–25672 (2004).

    Article  CAS  Google Scholar 

  20. Singh, B. B. et al. VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol. Cell 15, 635–646 (2004).

    Article  CAS  Google Scholar 

  21. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  Google Scholar 

  22. Brown, D. The ins and outs of aquaporin-2 trafficking. Am. J. Physiol. Renal Physiol. 284, F893–F901 (2003).

    Article  CAS  Google Scholar 

  23. Lorenz, D. et al. Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep. 4, 88–93 (2003).

    Article  CAS  Google Scholar 

  24. Gouraud, S. et al. Functional involvement of VAMP/synaptobrevin-2 in cAMP-stimulated aquaporin 2 translocation in renal collecting duct cells. J. Cell Sci. 115, 3667–3674 (2002).

    Article  CAS  Google Scholar 

  25. Kamsteeg, E. J. et al. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J. Cell Biol. 163, 1099–1109 (2003).

    Article  CAS  Google Scholar 

  26. Lin, D., Sterling, H., Lerea, K. M., Giebisch, G. & Wang, W. H. Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels. J. Biol. Chem. 277, 44278–44284 (2002).

    Article  CAS  Google Scholar 

  27. Feranchak, A. P., Kilic, G., Wojtaszek, P. A., Qadri, I. & Fitz, J. G. Volume-sensitive tyrosine kinases regulate liver cell volume through effects on vesicular trafficking and membrane Na+ permeability. J. Biol. Chem. 278, 44632–44638 (2003).

    Article  CAS  Google Scholar 

  28. Watson, R. T., Kanzaki, M. & Pessin, J. E. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr. Rev. 25, 177–204 (2004).

    Article  CAS  Google Scholar 

  29. Tengholm, A. & Meyer, T. A PI3-kinase signaling code for insulin-triggered insertion of glucose transporters into the plasma membrane. Curr. Biol. 12, 1871–1876 (2002).

    Article  CAS  Google Scholar 

  30. Xu, Z. & Kandror, K. V. Translocation of small preformed vesicles is responsible for the insulin activation of glucose transport in adipose cells. Evidence from the in vitro reconstitution assay. J. Biol. Chem. 277, 47972–47975 (2002).

    Article  CAS  Google Scholar 

  31. Hyde, R., Peyrollier, K. & Hundal, H. S. Insulin promotes the cell surface recruitment of the SAT2/ATA2 system A amino acid transporter from an endosomal compartment in skeletal muscle cells. J. Biol. Chem. 277, 13628–13634 (2002).

    Article  CAS  Google Scholar 

  32. du Cheyron, D. et al. Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int. 64, 939–949 (2003).

    Article  CAS  Google Scholar 

  33. Okamoto, C. T. & Forte, J. G. Vesicular trafficking machinery, the actin cytoskeleton, and H+-K+-ATPase recycling in the gastric parietal cell. J. Physiol. 532, 287–296 (2001).

    Article  CAS  Google Scholar 

  34. Li, G., Alexander, E. A. & Schwartz, J. H. Syntaxin isoform specificity in the regulation of renal H+-ATPase exocytosis. J. Biol. Chem. 278, 19791–19797 (2003).

    Article  CAS  Google Scholar 

  35. Perez, J. F., Ruiz, M. C. & Michelangeli, F. Simultaneous measurement and imaging of intracellular Ca2+ and H+ transport in isolated rabbit gastric glands. J. Physiol. 537, 735–745 (2001).

    Article  CAS  Google Scholar 

  36. Oliveira-Souza, M., Musa-Aziz, R., Malnic, G. & De Mello Aires, M. Arginine vasopressin stimulates H+-ATPase in MDCK cells via V1 (cell Ca2+) and V2 (cAMP) receptors. Am. J. Physiol. Renal Physiol. 286, F402–F408 (2004).

    Article  CAS  Google Scholar 

  37. Karvar, S., Yao, X., Crothers, J. M. Jr, Liu, Y. & Forte, J. G. Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. J. Biol. Chem. 277, 50030–50035 (2002).

    Article  CAS  Google Scholar 

  38. Ammar, D. A., Zhou, R., Forte, J. G. & Yao, X. Syntaxin 3 is required for cAMP-induced acid secretion: streptolysin O-permeabilized gastric gland model. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G23–G33 (2002).

    Article  CAS  Google Scholar 

  39. Morris, C. E. & Homann, U. Cell surface area regulation and membrane tension. J. Membr. Biol. 179, 79–102 (2001).

    Article  CAS  Google Scholar 

  40. Loncar, D. & Singer, S. J. Cell membrane formation during the cellularization of the syncytial blastoderm of Drosophila. Proc. Natl Acad. Sci. USA 92, 2199–2203 (1995).

    Article  CAS  Google Scholar 

  41. Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J. Cell Biol. 150, 849–860 (2000).

    Article  CAS  Google Scholar 

  42. Pelissier, A., Chauvin, J. P. & Lecuit, T. Trafficking through Rab11 endosomes is required for cellularization during Drosophila embryogenesis. Curr. Biol. 13, 1848–1857 (2003).

    Article  CAS  Google Scholar 

  43. Finger, F. P. & White, J. G. Fusion and fission: membrane trafficking in animal cytokinesis. Cell 108, 727–730 (2002).

    Article  CAS  Google Scholar 

  44. Danilchik, M. V., Bedrick, S. D., Brown, E. E. & Ray, K. Furrow microtubules and localized exocytosis in cleaving Xenopus laevis embryos. J. Cell Sci. 116, 273–283 (2003).

    Article  CAS  Google Scholar 

  45. Low, S. H. et al. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev. Cell 4, 753–759 (2003).

    Article  CAS  Google Scholar 

  46. Martinez-Arca, S. et al. A common exocytotic mechanism mediates axonal and dendritic outgrowth. J. Neurosci. 21, 3830–3838 (2001).

    Article  CAS  Google Scholar 

  47. Pfenninger, K. H. et al. Regulation of membrane expansion at the nerve growth cone. J. Cell Sci. 116, 1209–1217 (2003).

    Article  CAS  Google Scholar 

  48. Wayman, G. A. et al. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J. Neurosci. 24, 3786–3794 (2004).

    Article  CAS  Google Scholar 

  49. Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D. & Galli, T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J. Cell Biol. 149, 889–900 (2000).

    Article  CAS  Google Scholar 

  50. Holevinsky, K. O. & Nelson, D. J. Membrane capacitance changes associated with particle uptake during phagocytosis in macrophages. Biophys. J. 75, 2577–2586 (1998).

    Article  CAS  Google Scholar 

  51. Di, A. et al. Dynamin regulates focal exocytosis in phagocytosing macrophages. Mol. Biol. Cell 14, 2016–2028 (2003).

    Article  CAS  Google Scholar 

  52. Bajno, L. et al. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol. 149, 697–706 (2000).

    Article  CAS  Google Scholar 

  53. Borgonovo, B. et al. Regulated exocytosis: a novel, widely expressed system. Nature Cell Biol. 4, 955–962 (2002).

    Article  CAS  Google Scholar 

  54. Cerny, J. et al. The small chemical vacuolin-1 inhibits Ca2+-dependent lysosomal exocytosis but not cell resealin. EMBO Rep. 5, 883–888 (2004).

    Article  CAS  Google Scholar 

  55. Cocucci, E., Racchetti, G., Podini, P., Rupnik, M. & Meldolesi, J. Enlargeosome, an exocytic vesicle resistant to non-ionic detergents, undergoes endocytosis via a non-acidic route. Mol. Biol. Cell 15, 5356–5368 (2004).

    Article  CAS  Google Scholar 

  56. Bansal, D. et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168–172 (2003).

    Article  CAS  Google Scholar 

  57. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neurosci. 7, 244–253 (2004).

    Article  CAS  Google Scholar 

  58. Nichols, B. J. & Lippincott-Schwartz, J. Endocytosis without clathrin coats. Trends Cell Biol. 11, 406–412 (2001).

    Article  CAS  Google Scholar 

  59. Parton, R. G. & Richards, A. A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4, 724–738 (2003).

    Article  CAS  Google Scholar 

  60. Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004).

    Article  CAS  Google Scholar 

  61. Zeigerer, A. et al. GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps. Mol. Biol. Cell 13, 2421–2435 (2002).

    Article  CAS  Google Scholar 

  62. Watson, R. T. et al. Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is GGA dependent. EMBO J. 23, 2059–2070 (2004).

    Article  CAS  Google Scholar 

  63. Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  Google Scholar 

  64. Shigematsu, S., Watson, R. T., Khan, A. H. & Pessin, J. E. The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4. J. Biol. Chem. 278, 10683–10690 (2003).

    Article  CAS  Google Scholar 

  65. Pastor-Soler, N. et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J. Biol. Chem. 278, 49523–49529 (2003).

    Article  CAS  Google Scholar 

  66. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).

    Article  CAS  Google Scholar 

  67. Jaiswal, J. K., Andrews, N. W. & Simon, S. M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The original studies by E.C. and J.M. that are reported in this article were supported by grants from the European Union (Growbeta), Italian Ministry of Research (Co-Fin and FIRB), and Telethon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Meldolesi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

aquaporin-2

aquaporin-8

calmodulin

dysferlin

GluR1

GLUT4

insulin

protein kinase Cζ

ROMK1

SNAP23

tetanus toxin

TRPC3

TRPC5

VAMP2

VAMP3

VAMP8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chieregatti, E., Meldolesi, J. Regulated exocytosis: new organelles for non-secretory purposes. Nat Rev Mol Cell Biol 6, 181–187 (2005). https://doi.org/10.1038/nrm1572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing