Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Initiation of DNA replication: lessons from viral initiator proteins

Key Points

  • Initiator proteins recognize and bind to the replicator and serve to initiate DNA replication. The activities that are provided by initiator proteins range from recognition of the ori and recruitment of replication factors, to melting of double-stranded DNA and replicative DNA-helicase activity.

  • A surprising feature of initiator proteins is that they bind DNA with modest sequence specificity, although marking of the site of initiation is a task that is likely to require high specificity. For viral initiator proteins, the low specificity is caused by the presence of a nonspecific DNA-binding activity that is required for the melting and unwinding steps. Highly specific binding for ori recognition is generated by inhibition of the nonspecific binding activity.

  • DNA-binding domains, which direct site-specific DNA binding of initiator proteins, are structurally related in initiators from different virus groups and demonstrate a common ancestry of these domains with proteins that bind RNA.

  • Viral initiator proteins, using multiple protein–DNA and protein–protein interactions, assemble in an ordered fashion into different complexes that, in succession, provide sequence-specific recognition, DNA-melting activity and DNA-helicase activity. This 'hardwiring' of the successive initiator activities ensures a highly efficient and robust initiation process.

  • We suggest that one way to understand the complex cellular initiator proteins is to understand in some detail how viral initiators function: such an understanding will assist in the identification and characterization of the corresponding functions that are present in the cellular initiators.

Abstract

Initiator proteins are key components of the DNA replication machinery that determine where initiation will occur. In the past few years, due to a greatly improved understanding of what viral initiators look like and how they function, we can now identify the basic tasks that are required of initiators, as well as begin to comprehend what activities are required to perform these tasks. The improved knowledge of the viral initiators also demonstrates an unexpected level of conservation between different viral initiators, which might extend also to their cellular counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initiation of DNA replication.
Figure 2: ATP-dependent loading of E1.
Figure 3: E2 generates specificity by inhibiting nonspecific DNA binding.
Figure 4: The DNA-binding domains of viral initiator proteins are structurally related to RNA-binding proteins.
Figure 5: Assembly of viral initiator complexes requires multiple interactions.
Figure 6: Functional model for the double hexamer as a bi-directional helicase machine.
Figure 7: The double-hexamer helicase machine.

Similar content being viewed by others

References

  1. Jacob, F., Brenner, S. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28, 329–348 (1963).

    CAS  Google Scholar 

  2. Bell, S. P. The origin recognition complex: from simple origins to complex functions. Genes Dev. 16, 659–672 (2002).

    CAS  PubMed  Google Scholar 

  3. Sedman, J. & Stenlund, A. Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J. 14, 6218–6228 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lorimer, H. E., Wang, E. H. & Prives, C. The DNA-binding properties of polyomavirus large T antigen are altered by ATP and other nucleotides. J. Virol. 65, 687–699 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, L. et al. The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proc. Natl Acad. Sci. USA 90, 5086–5090 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, G. & Stenlund, A. Two patches of amino acids on the E2 DNA binding domain define the surface for interaction with E1. J. Virol. 74, 1506–1512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berg, M. & Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J. Virol. 71, 3853–3863 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gillitzer, E., Chen, G. & Stenlund, A. Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA binding. EMBO J. 19, 3069–3079 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohr, I. J. et al. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250, 1694–1699 (1990).

    CAS  PubMed  Google Scholar 

  10. Sanders, C. M. & Stenlund, A. Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. EMBO J. 17, 7044–7055 (1998). This paper describes the original observation that E2 loads the initiator E1 in an ATP-dependent process.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanders, C. M. & Stenlund, A. Transcription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex. J. Biol. Chem. 275, 3522–3534 (2000).

    CAS  PubMed  Google Scholar 

  12. Alberts, B. & Miake-Lye, R. Unscrambling the puzzle of biological machines: the importance of the details. Cell 68, 415–420 (1992).

    CAS  PubMed  Google Scholar 

  13. Stenlund, A. E1 initiator DNA binding specificity is unmasked by selective inhibition of non-specific DNA binding. EMBO J. 22, 954–963 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chuang, R. Y. & Kelly, T. J. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl Acad. Sci. USA 96, 2656–2661 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo, X., Sanford, D. G., Bullock, P. A. & Bachovchin, W. W. Solution structure of the origin DNA-binding domain of SV40 T-antigen. Nature Struct. Biol. 3, 1034–1039 (1996).

    CAS  PubMed  Google Scholar 

  16. Enemark, E. J., Chen, G., Vaughn, D. E., Stenlund, A. & Joshua-Tor, L. Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus. Mol. Cell 6, 149–158 (2000).

    CAS  PubMed  Google Scholar 

  17. Hickman, A. B., Ronning, D. R., Kotin, R. M. & Dyda, F. Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol. Cell 10, 327–337 (2002).

    CAS  PubMed  Google Scholar 

  18. Campos-Olivas, R., Louis, J. M., Clerot, D., Gronenborn, B. & Gronenborn, A. M. The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc. Natl Acad. Sci. USA 99, 10310–10315 (2002). References 15–18 describe the highly related DNA-binding domain structures from four viral initiator proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Speck, C. & Messer, W. Mechanism of origin unwinding: sequential binding of DnaA to double- and single-stranded DNA. EMBO J. 20, 1469–1476 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, D. G., Makhov, A. M., Klemm, R. D., Griffith, J. D. & Bell, S. P. Regulation of origin recognition complex conformation and ATPase activity: differential effects of single-stranded and double-stranded DNA binding. EMBO J. 19, 4774–4782 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, J. et al. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol. Cell 6, 637–648 (2000).

    CAS  PubMed  Google Scholar 

  22. Erzberger, J. P., Pirruccello, M. M. & Berger, J. M. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J. 21, 4763–4773 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tijan, R. The binding site on SV40 DNA for a T-antigen related protein. Cell 13, 165–179 (1978).

    Google Scholar 

  24. Joo, W. S. et al. Purification of the simian virus 40 (SV40) T antigen DNA-binding domain and characterization of its interactions with the SV40 origin. J. Virol. 71, 3972–3985 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, G. & Stenlund, A. Characterization of the DNA-binding domain of the bovine papillomavirus replication initiator E1. J. Virol. 72, 2567–2576 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, G. & Stenlund, A. The E1 initiator recognizes multiple overlapping sites in the papillomavirus origin of DNA replication. J. Virol. 75, 292–302 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Enemark, E. J., Stenlund, A. & Joshua-Tor, L. Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex. EMBO J. 21, 1487–1496 (2002). Provides the most complete high-resolution description of how initiator proteins bind to DNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, G. & Stenlund, A. Sequential and ordered assembly of E1 initiator complexes on the papillomavirus origin of DNA replication generates progressive structural changes related to melting. Mol. Cell. Biol. 22, 7712–7720 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Valle, M., Gruss, C., Halmer, L., Carazo, J. M. & Donate, L. E. Large T-antigen double hexamers imaged at the simian virus 40 origin of replication. Mol. Cell. Biol. 20, 34–41 (2000). An EM study providing image reconstructions of the dumb-bell shape that the SV40 T-ag double hexamer adopts when bound to the SV40 origin of DNA replication.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mastrangelo, I. A. et al. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature 338, 658–662 (1989). Describes the original identification of the T-ag double-hexamer complex by STEM (scanning transmission electron microscopy).

    CAS  PubMed  Google Scholar 

  31. Sanders, C. M. & Stenlund, A. Mechanism and requirements for bovine papillomavirus, type 1, E1 initiator complex assembly promoted by the E2 transcription factor bound to distal sites. J. Biol. Chem. 276, 23689–23699 (2001).

    CAS  PubMed  Google Scholar 

  32. Borowiec, J. A. & Hurwitz, J. ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc. Natl Acad. Sci. USA 85, 64–68 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Deb, S. P. & Tegtmeyer, P. ATP enhances the binding of simian virus 40 large T antigen to the origin of replication. J. Virol. 61, 3649–3654 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dean, F. B., Dodson, M., Echols, H. & Hurwitz, J. ATP-dependent formation of a specialized nucleoprotein structure by simian virus 40 (SV40) large tumor antigen at the SV40 replication origin. Proc. Natl Acad. Sci. USA 84, 8981–8985 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McVey, D. et al. Phosphorylation of large tumour antigen by cdc2 stimulates SV40 DNA replication. Nature 341, 503–507 (1989).

    CAS  PubMed  Google Scholar 

  36. Prives, C. The replication functions of SV40 T antigen are regulated by phosphorylation. Cell 61, 735–738 (1990).

    CAS  PubMed  Google Scholar 

  37. Cueille, N., Nougarede, R., Mechali, F., Philippe, M. & Bonne-Andrea, C. Functional interaction between the bovine papillomavirus virus type 1 replicative helicase E1 and cyclin E-Cdk2. J. Virol. 72, 7255–7262 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma, T., Zou, N., Lin, B. Y., Chow, L. T. & Harper, J. W. Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proc. Natl Acad. Sci. USA 96, 382–387 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbaro, B. A., Sreekumar, K. R., Winters, D. R., Prack, A. E. & Bullock, P. A. Phosphorylation of simian virus 40 T antigen on Thr 124 selectively promotes double-hexamer formation on subfragments of the viral core origin. J. Virol. 74, 8601–8613 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weisshart, K. et al. Two regions of simian virus 40 T antigen determine cooperativity of double-hexamer assembly on the viral origin of DNA replication and promote hexamer interactions during bidirectional origin DNA unwinding. J. Virol. 73, 2201–2211 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dean, F. B. & Hurwitz, J. Simian virus 40 large T antigen untwists DNA at the origin of DNA replication. J. Biol. Chem. 266, 5062–5071 (1991).

    CAS  PubMed  Google Scholar 

  42. Parsons, R., Anderson, M. E. & Tegtmeyer, P. Three domains in the simian virus 40 core origin orchestrate the binding, melting, and DNA helicase activities of T antigen. J. Virol. 64, 509–518 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Borowiec, J. A. & Hurwitz, J. Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J. 7, 3149–3158 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gillette, T. G., Lusky, M. & Borowiec, J. A. Induction of structural changes in the bovine papillomavirus type 1 origin of replication by the viral E1 and E2 proteins. Proc. Natl Acad. Sci. USA 91, 8846–8850 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sasse-Dwight, S. & Gralla, J. D. Footprinting protein-DNA complexes in vivo. Methods Enzymol. 208, 146–168 (1991).

    CAS  PubMed  Google Scholar 

  46. VanLoock, M. S., Alexandrov, A., Yu, X., Cozzarelli, N. R. & Egelman, E. H. SV40 large T antigen hexamer structure: domain organization and DNA-induced conformational changes. Curr. Biol. 12, 472–476 (2002).

    CAS  PubMed  Google Scholar 

  47. Li, D. et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423, 512–518 (2003). Describes the crystal structure of a hexameric form of the SV40 T-ag helicase domain.

    CAS  PubMed  Google Scholar 

  48. Borowiec, J. A., Dean, F. B. & Hurwitz, J. Differential induction of structural changes in the simian virus 40 origin of replication by T antigen. J. Virol. 65, 1228–1235 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Goetz, G. S., Dean, F. B., Hurwitz, J. & Matson, S. W. The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. J. Biol. Chem. 263, 383–392 (1988).

    CAS  PubMed  Google Scholar 

  50. Dean, F. B. et al. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc. Natl Acad. Sci. USA 84, 16–20 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, B. Y., Makhov, A. M., Griffith, J. D., Broker, T. R. & Chow, L. T. Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol. Cell. Biol. 22, 6592–6604 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Smelkova, N. V. & Borowiec, J. A. Synthetic DNA replication bubbles bound and unwound with twofold symmetry by a simian virus 40 T-antigen double hexamer. J. Virol. 72, 8676–8681 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dodson, M., Dean, F. B., Bullock, P., Echols, H. & Hurwitz, J. Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science 238, 964–967 (1987).

    CAS  PubMed  Google Scholar 

  54. Fouts, E. T., Yu, X., Egelman, E. H. & Botchan, M. R. Biochemical and electron microscopic image analysis of the hexameric E1 helicase. J. Biol. Chem. 274, 4447–4458 (1999).

    CAS  PubMed  Google Scholar 

  55. Sedman, J. & Stenlund, A. The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities. J. Virol. 72, 6893–6897 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Seo, Y. S., Muller, F., Lusky, M. & Hurwitz, J. Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proc. Natl Acad. Sci. USA 90, 702–706 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    CAS  PubMed  Google Scholar 

  58. Wessel, R., Schweizer, J. & Stahl, H. Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J. Virol. 66, 804–815 (1992). The original observation of the T-ag double hexamer as a functional entity — a 'helicase machine'.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Smelkova, N. V. & Borowiec, J. A. Dimerization of simian virus 40 T-antigen hexamers activates T-antigen DNA helicase activity. J. Virol. 71, 8766–8773 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Alexandrov, A. I., Botchan, M. R. & Cozzarelli, N. R. Characterization of simian virus 40 T-antigen double hexamers bound to a replication fork. The active form of the helicase. J. Biol. Chem. 277, 44886–44897 (2002).

    CAS  PubMed  Google Scholar 

  61. Joo, W. S., Kim, H. Y., Purviance, J. D., Sreekumar, K. R. & Bullock, P. A. Assembly of T-antigen double hexamers on the simian virus 40 core origin requires only a subset of the available binding sites. Mol. Cell. Biol. 18, 2677–2687 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. West, S. C. DNA helicases: new breeds of translocating motors and molecular pumps. Cell 86, 177–180 (1996).

    CAS  PubMed  Google Scholar 

  63. Kaplan, D. L. & O'Donnell, M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell 10, 647–657 (2002).

    CAS  PubMed  Google Scholar 

  64. Labib, K. & Diffley, J. F. Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr. Opin. Genet. Dev. 11, 64–70 (2001).

    CAS  PubMed  Google Scholar 

  65. Tye, B. K. MCM proteins in DNA replication. Annu. Rev. Biochem. 68, 649–686 (1999).

    CAS  PubMed  Google Scholar 

  66. Tye, B. K. & Sawyer, S. The hexameric eukaryotic MCM helicase: building symmetry from nonidentical parts. J. Biol. Chem. 275, 34833–34836 (2000).

    CAS  PubMed  Google Scholar 

  67. Ishimi, Y. A DNA helicase activity is associated with an MCM4,-6, and-7 protein complex. J. Biol. Chem. 272, 24508–24513 (1997).

    CAS  PubMed  Google Scholar 

  68. Laskey, R. A. & Madine, M. A. A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4, 26–30 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fletcher, R. J. et al. The structure and function of MCM from archaeal M. thermoautotrophicum. Nature Struct. Biol. 10, 160–167 (2003).

    CAS  PubMed  Google Scholar 

  70. Chong, J. P., Hayashi, M. K., Simon, M. N., Xu, R. M. & Stillman, B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl Acad. Sci. USA 97, 1530–1535 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kelman, Z., Lee, J. K. & Hurwitz, J. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc. Natl Acad. Sci. USA 96, 14783–14788 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shechter, D. F., Ying, C. Y. & Gautier, J. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum delta H minichromosome maintenance protein. J. Biol. Chem. 275, 15049–15059 (2000). References 70–72 identify the Methanobacterium MCM helicase as a double hexamer.

    CAS  PubMed  Google Scholar 

  73. Han, Y., Loo, Y. M., Militello, K. T. & Melendy, T. Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A. J. Virol. 73, 4899–4907 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Simmons, D. T., Melendy, T., Usher, D. & Stillman, B. Simian virus 40 large T antigen binds to topoisomerase I. Virology 222, 365–374 (1996).

    CAS  PubMed  Google Scholar 

  75. Dornreiter, I., Hoss, A., Arthur, A. K. & Fanning, E. SV40 T antigen binds directly to the large subunit of purified DNA polymerase α. EMBO J. 9, 3329–3336 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, P. et al. The cellular DNA polymerase α-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. Proc. Natl Acad. Sci. USA 91, 8700–8704 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thommes, P. et al. Properties of the nuclear P1 protein, a mammalian homologue of the yeast Mcm3 replication protein. Nucl. Acids Res. 20, 1069–1074 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817–823 (1992).

    CAS  PubMed  Google Scholar 

  79. Bell, S. P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134 (1992).

    CAS  PubMed  Google Scholar 

  80. Wilmes, G. M. & Bell, S. P. The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proc. Natl Acad. Sci. USA 99, 101–106 (2002).

    CAS  PubMed  Google Scholar 

  81. Kelman, Z. & O'Donnell, M. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64, 171–200 (1995).

    CAS  PubMed  Google Scholar 

  82. Tsurimoto, T. & Stillman, B. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J. Biol. Chem. 266, 1950–1960 (1991).

    CAS  PubMed  Google Scholar 

  83. Wahle, E., Lasken, R. S. & Kornberg, A. The dnaB-dnaC replication protein complex of Escherichia coli. II. Role of the complex in mobilizing dnaB functions. J. Biol. Chem. 264, 2469–2475 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xiaojiang Chen for communicating results before publication. A.S. was supported by CA 13106 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

GenBank

E1

E2

T-ag

LocusLink

DNA polymerase-α

MCM2

MCM3

MCM4

MCM5

MCM6

MCM7

RPA

Glossary

REPLICATOR

A genetically defined term denoting the DNA sequence to which the initiator binds and that controls the initiation of DNA replication.

ORC

(Origin recognition complex). An evolutionarily conserved six-polypeptide complex, which serves as the initiator in eukaryotes.

DnaA

A single-subunit protein that is the initiator in E. coli. DnaA is also required for the replication of many bacterial plasmids.

HELICASE

An enzyme that catalyses unwinding (that is, strand separation) of double-stranded DNA or RNA.

CLAMP LOADER

The machinery in E. coli and eukaryotes that loads the sliding-clamp-like DNA polymerase processivity factors (β-clamp and PCNA in E. coli and eukaryotes, respectively) onto DNA.

ROLLING-CIRCLE REPLICATION

(RCR). A basic mechanism for replication of DNA that is used by plasmids, phages and single-stranded viruses. RCR is characterized by the generation of a single-stranded nick in the template, exposing a 3′-end, which can be extended by a DNA polymerase, thereby displacing the parental strand. The products are concatemers of unit-length single-stranded DNA.

RPA

(Replication protein A). A three-subunit single-stranded DNA-binding protein in eukaryotes.

SSB

(Single-stranded DNA-binding protein). A bacterial single-stranded DNA-binding protein that has an essential role in replication, recombination and repair.

MCM

(Mini chromosome maintenance). A set of proteins that were originally identified as affecting the maintenance of plasmids in yeast. MCM2–7 are thought to be the replicative DNA helicases of eukaryotic cells.

TOPOISOMERASE

An enzyme that changes DNA supercoiling by inserting or removing superhelical twists.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenlund, A. Initiation of DNA replication: lessons from viral initiator proteins. Nat Rev Mol Cell Biol 4, 777–785 (2003). https://doi.org/10.1038/nrm1226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing