Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Signalling through nuclear receptors

Abstract

A century ago, secretions from the pancreas were described as 'hormones', which we now know are secreted from all ductless glands. The development of various technologies has already contributed a great deal — and will undoubtedly offer more — to our understanding of their mode of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ernest Starling.
Figure 2: Frederick Banting and Charles Best with their first diabetic patient.
Figure 3: Principal structure–function characteristics of two classes of nuclear steroid/thyroid hormone/retinoid receptors.
Figure 4: The 1–2–3–4–5 rule.
Figure 5: A simplified model of a complex for RNA polymerase II (Pol II)-catalysed transcription.
Figure 6: Model to explain the dual effects of ecdysone on the induction and de-induction of serial chromosomal puffs during metamorphosis in Drosophila.

References

  1. Bayliss, W. M. & Starling, E. H. The mechanism of pancreatic secretion. J. Physiol. 28, 325–353 (1902).

    Article  CAS  Google Scholar 

  2. Gorbman, A. & Bern, H. A. A Textbook of Comparative Endocrinology (John Wiley, New York, 1962).

    Book  Google Scholar 

  3. Turner, C. D. & Bagnara, J. General Endocrinology (Saunders, Philadelphia, 1971).

    Google Scholar 

  4. Norman, A. W. & Litwack, G. Hormones (Academic Press, Orlando, 1997).

    Google Scholar 

  5. Baulieu, E.-E. & Kelly, P. A. (eds) Hormones. From Molecules to Disease (Hermann, Paris, 1990).

    Google Scholar 

  6. Smith, J. C., Price, B. M. J., van Nimmen, K. & Huylbroeck, D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345, 729–731 (1990).

    Article  CAS  Google Scholar 

  7. Nicoll, C. S. in Handbook of Physiology Vol. 4 (eds Knobil, E. & Sawyer, W. H.) Part 2, 253–292 (American Physiological Society, Washington, 1974).

    Google Scholar 

  8. Pitt-Rivers, R. & Tata, J. R. The Thyroid Hormones (Pergamon, London, 1959).

    Google Scholar 

  9. Gudernatsch, J. F. Feeding experiments on tadpoles. Arch. Entwicklungsmech. Organ 35, 457–483 (1912).

    Article  Google Scholar 

  10. Kendall, E. C. Thyroxine (The Chemical Catlog Co. Inc., New York, 1929).

    Google Scholar 

  11. Harington, C. R. & Barger, G. Chemistry of thyroxine. III: constitution and synthesis of thyroxine. Biochem. J. 21, 169–171 (1926).

    Article  Google Scholar 

  12. Barrington, E. J. W. Chemical communication. Proc. R. Soc. Lond. B 199, 361–375 (1977).

    Article  CAS  Google Scholar 

  13. Banting, F. & Best, C. H. The internal secretion of the pancreas. J. Lab. Clin. Med. 7, 251–266 (1922).

    CAS  Google Scholar 

  14. Doisy, E. A., Thayer, S. A., Levin, L. & Curtis, J. M. A new tratomic alcohol from the urine of pregnant women. Proc. Soc. Exp. Biol. Med. 28, 88–89 (1930).

    Article  Google Scholar 

  15. Butenandt, A. Uber physikalisch und chemische Eigen schaften des kristallisierten Folikelhormons. Hoppe-Seylers Z. Physiol. Chem. 191, 140–156 (1930).

    Article  CAS  Google Scholar 

  16. Tata, J. R. The search for the mechanism of hormone action. Pers. Biol. Med. 29, 184–204 (1986).

    Article  Google Scholar 

  17. Tepperman, J. & Tepperman, H. M. Some effects of hormones on cells and cell constituents. Pharmacol. Rev. 12, 301–353 (1960).

    CAS  PubMed  Google Scholar 

  18. Yielding. K. L. & Tomkins, G. M. Studies on the interaction of steroid hormones with glutamic dehydrogenase. Recent Prog. Horm. Res. 18, 467–485 (1962).

    CAS  Google Scholar 

  19. Levine, R. & Goldstein, M. S. On the mechanism of action of insulin. Recent Prog. Horm. Res. 11, 343–375 (1955).

    Google Scholar 

  20. Riggs, T. R. in Actions of Hormones on Molecular Processes (eds Litwack, G. & Kritchevsky, D.) (Wiley, New York, 1964).

    Google Scholar 

  21. Sutherland, E. W. Studies on the mechanism of hormone action. Science 177, 401–408 (1972).

    Article  CAS  Google Scholar 

  22. Knox, W. E., Auerbach, V. H. & Lin, E. C. C. Enzymatic and metabolic adaptations in animals. Physiol. Rev. 36, 164–254 (1956).

    Article  CAS  Google Scholar 

  23. Tata, J. R. et al. The action of thyroid hormones at the cellular level. Biochem. J. 86, 408–428 (1963).

    Article  CAS  Google Scholar 

  24. Clever, U. & Karlson, P. Induktion von Puff-Veranderungen in den Speicheldrusen-chromosomen von Chironomus tentans durch Ecdyson. Exp. Cell Res. 20, 623–626 (1960).

    Article  CAS  Google Scholar 

  25. Williams-Ashman, H. G. et al. Testicular hormones and the synthesis of ribonucleic acids and proteins in the prostate gland. Recent Prog. Horm. Res. 20, 247–301 (1964).

    CAS  PubMed  Google Scholar 

  26. Tata, J. R. Hormones and the synthesis and utilization of ribonucleic acids. Prog. Nucleic Acid Res. Mol. Biol. 5, 191–250 (1966).

    Article  CAS  Google Scholar 

  27. O'Malley, B. W. et al. Regulation of gene expression in chick oviduct. Cold Spring Harbor Symp. Quant. Biol. 42, 605–615 (1978).

    Article  CAS  Google Scholar 

  28. LeMeur, M. et al. The ovalbumin gene family: hormonal control of X and Y gene transcription and mRNA accumulation. Cell 23, 561–571 (1981).

    Article  CAS  Google Scholar 

  29. Tata, J. R. Hormonal Signaling and Postembryonic Development (Springer, Berlin, 1997).

    Google Scholar 

  30. Tata, J. R. & Smith, D. F. Vitellogenesis: a versatile model for hormonal regulation of gene expression. Recent Prog. Horm. Res. 35, 47–95 (1979).

    CAS  PubMed  Google Scholar 

  31. Schulster, D. & Levitzki, A. (eds) Cellular Receptors (John Wiley, Chichester, 1980).

    Google Scholar 

  32. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  33. Jensen, E. V. & Jacobson, H. I. Basic guides to the mechanism of estrogen action. Recent Prog. Horm. Res. 18, 387–414 (1962).

    CAS  Google Scholar 

  34. Jensen, E. V. Mechanism of estrogen action in relation to carcinogenesis. Canad. Cancer Conf. 6, 143–165 (1965).

    Google Scholar 

  35. Jensen, E. V. et al. A two-step mechanism for the interaction of estradiol with rat uterus. Proc. Natl Acad. Sci. USA 59, 632–638 (1968).

    Article  CAS  Google Scholar 

  36. Jensen E. V. & De Sombre, E. R. Estrogen–receptor interaction: estrogenic hormones effect transformation of specific receptor proteins to a biochemically functional form. Science 182, 126–134 (1973).

    Article  CAS  Google Scholar 

  37. Baulieu, E.-E. et al. in Vitamins and Hormones 649–736 (Academic Press, New York, 1975).

    Google Scholar 

  38. Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock proteins and immunophilin chaperones. Endocrine Rev. 18, 306–360 (1997).

    CAS  Google Scholar 

  39. Parker, M. G. (ed.) Nuclear Hormone Receptors (Academic Press, London, 1991).

    Google Scholar 

  40. Kuiper, G. J. M. et al. Cloning of a novel estrogen receptor expressed in rat prostate. Proc. Natl Acad. Sci. USA 93, 5925–5930 (1996).

    Article  CAS  Google Scholar 

  41. Laudet, V. & Gronemeyer, H. The Nuclear Receptor Facts Book (Academic Press, Orlando, 2002).

    Google Scholar 

  42. Chambon, P. The molecular and genetic dissection of the retinoid signaling pathway. Recent Prog. Horm. Res. 50, 317–332 (1995).

    CAS  PubMed  Google Scholar 

  43. Mansén, A., Yu, F., Forrest, D., Larsson, L. & Vennström, B. TRs have common and isoform-specific functions in regulation of the cardiac myosin heavy chain genes. Mol. Endocrinol. 15, 2106–2114 (2001).

    Article  Google Scholar 

  44. Cheng, K. W., Cheng, C.-K. & Leung, P. C. K. Differential role of PR-A and -B isoforms in transcription regulation of human GnRH receptor gene. Mol. Endocrinol. 15, 2078–2092 (2001).

    Article  CAS  Google Scholar 

  45. Gauthier, K. et al. Different functions of the thyroid hormone receptors Trα and Trβ in the control of thyroid hormone production and post-natal development. EMBO J. 18, 623–631 (1999).

    Article  CAS  Google Scholar 

  46. Schwabe, J. W. R. et al. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75, 567–578 (1993).

    Article  CAS  Google Scholar 

  47. Rastinejad, F. et al. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375, 203–211 (1995).

    Article  CAS  Google Scholar 

  48. Schule, R. et al. Many transcription factors interact synergistically with steroid receptors. Science 242, 1418–1420 (1988).

    Article  CAS  Google Scholar 

  49. Papavassilou, A. Transcription Factors in Eukaryotes (Springer, Berlin, 1997).

    Google Scholar 

  50. Fondell, J. D., Roy, A. L. & Roeder, R. G. Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev. 7, 1400–1410 (1993).

    Article  CAS  Google Scholar 

  51. Chakravarti, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  CAS  Google Scholar 

  52. Demarest, S. J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor cooactivators. Nature 415, 549–553 (2002).

    Article  CAS  Google Scholar 

  53. Halachmi, S. E. et al. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264, 1455–1458 (1994).

    Article  CAS  Google Scholar 

  54. Onate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Sequence and characterization of a co-activator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    Article  CAS  Google Scholar 

  55. Chambon, P. et al. Promoter elements of genes coding for proteins and modulation of transcription by estrogens and progesterone. Recent Prog. Horm. Res. 40, 1–39 (1984).

    CAS  PubMed  Google Scholar 

  56. Beato, M. et al. Interaction of steroid hormone receptors with transcription factors involves chromatin remodelling. J. Ster. Biochem. Mol. Biol. 56, 47–59 (1996).

    Article  CAS  Google Scholar 

  57. Ashburner, M. et al. Temporal control of puffing activity in polytene chromosomes. Cold Spring Harbor Symp. Quant. Biol. 38, 655–662 (1974).

    Article  CAS  Google Scholar 

  58. Thummel, C. S. From embryogenesis to metamorphosis: the regulation and function of Drosophila nuclear receptor superfamily members. Cell 38, 871–877 (1995).

    Article  Google Scholar 

  59. Ito, M. & Roeder, R. G. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol. Metab. 12, 127–134 (2001).

    Article  CAS  Google Scholar 

  60. Parker, P. (ed.) Cell Signalling (Cold Spring Harbor, New York, 1996).

    Google Scholar 

  61. Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol. 2, 769–776 (2001).

    Article  CAS  Google Scholar 

  62. Sachs, L. M. & Shi, Y.-B. Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc. Natl Acad. Sci. USA 97, 13138–13143 (2000).

    Article  CAS  Google Scholar 

  63. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  64. Brivanlou, A. H. & Darnell, J. E. Jr. Signal transduction and the control of gene expression. Science 295, 813–818 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank Debbie Duthie for expert help in preparing this review.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

androgen receptor

CBP

epidermal growth factor

growth hormone

insulin

Janus kinase

oestrogen receptor

PPAR

progesterone receptor

prolactin

RXR

thyroid hormone receptor

tyrosine aminotransferase

VDR

OMIM

diabetes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tata, J. Signalling through nuclear receptors. Nat Rev Mol Cell Biol 3, 702–710 (2002). https://doi.org/10.1038/nrm914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing