Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The phosphatidylserine receptor: a crucial molecular switch?

Abstract

The uptake and removal of necrotic or lysed cells involves inflammation and an immune response, due in part to processes that involve members of the collectin family, surface calreticulin and CD91. Clearance of apoptotic cells, by contrast, does not induce either inflammation or immunity. Could the phosphatidylserine receptor be the molecular switch that determines what the outcome will be?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A proposed 'tether and tickle' mechanism for apoptotic cell uptake.
Figure 2: Phosphatidylserine on the surface of apoptotic cells.
Figure 3: Activation of immature dendritic cells.
Figure 4: The phosphatidylserine receptor as a key signalling receptor.
Figure 5: The role of collectins.
Figure 6: The phosphatidylserine receptor signalling switch.

Similar content being viewed by others

References

  1. Wintrobe, M. Clinical Hematology (Lea and Feibiger, Philadelphia, 1981).

    Google Scholar 

  2. Herrmann, M. et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 41, 1241–1250 (1998).

    Article  CAS  Google Scholar 

  3. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000).

    Article  CAS  Google Scholar 

  4. Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13, 114–119 (2001).

    Article  CAS  Google Scholar 

  5. Matzinger, P. An innate sense of danger. Semin. Immunol. 10, 399–415 (1998).

    Article  CAS  Google Scholar 

  6. Binder, R. J., Han, D. K. & Srivastava, P. K. CD91: a receptor for heat shock protein gp96. Nature Immunol. 1, 151–155 (2000).

    Article  CAS  Google Scholar 

  7. Platt, N., da Silva, R. P. & Gordon, S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol. 8, 365–372 (1998).

    Article  CAS  Google Scholar 

  8. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  Google Scholar 

  9. Gregory, C. D. CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr. Opin. Immunol. 12, 27–34 (2000).

    Article  CAS  Google Scholar 

  10. Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).

    Article  CAS  Google Scholar 

  11. Chen, L. M., Hobbie, S. & Galan, J. E. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274, 2115–2118 (1996).

    Article  CAS  Google Scholar 

  12. Francis, C. L., Ryan, T. A., Jones, B. D., Smith, S. J. & Falkow, S. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364, 639–642 (1993).

    Article  CAS  Google Scholar 

  13. Brumell, J. H., Steele-Mortimer, O. & Finlay, B. B. Bacterial invasion: force feeding by Salmonella. Curr. Biol. 9, R277–R280 (1999).

    Article  CAS  Google Scholar 

  14. Galan, J. E., Pace, J. & Hayman, M. J. Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Nature 357, 588–589 (1992).

    Article  CAS  Google Scholar 

  15. Tosello-Trampont, A. C., Brugnera, E. & Ravichandran, K. S. Evidence for a conserved role for crkii and rac in engulfment of apoptotic cells. J. Biol. Chem. 276, 13797–13802 (2001).

    Article  CAS  Google Scholar 

  16. Albert, M. L., Kim, J. I. & Birge, R. B. αvβ5 integrin recruits the CrkII–Dock180–rac1 complex for phagocytosis of apoptotic cells. Nature Cell Biol. 2, 899–905 (2000).

    Article  CAS  Google Scholar 

  17. Wiedmer, T., Zhou, Q., Kwoh, D. Y. & Sims, P. J. Identification of three new members of the phospholipid scramblase gene family. Biochim. Biophys. Acta 1467, 1–10 (2000).

    Article  Google Scholar 

  18. Zhou, Q. et al. Molecular cloning of human plasma membrane phospholipid scramblase. J. Biol. Chem. 272, 18240–18244 (1997).

    Article  CAS  Google Scholar 

  19. Ding, J. et al. Identification and functional expression of four isoforms of ATPase II, the putative aminophospholipid translocase. Effect of isoform variation on the ATPase activity and phospholipid specificity. J. Biol. Chem. 275, 23378–23386 (2000).

    Article  CAS  Google Scholar 

  20. Tang, X., Halleck, M. S., Schegel, R. A. & Williamson, P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272, 1495–1497 (1996).

    Article  CAS  Google Scholar 

  21. Gomes, E., Jakobsen, M. K., Axelsen, K. B., Geisler, M. & Palmgren, M. G. Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12, 2441–2454 (2000).

    Article  CAS  Google Scholar 

  22. Frasch, S. C. et al. Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase Cδ. J. Biol. Chem. 275, 23065–23073 (2000).

    Article  CAS  Google Scholar 

  23. Bratton, D. L. et al. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159–26165 (1997).

    Article  CAS  Google Scholar 

  24. Verhoven, B., Krahling, S., Schlegel, R. A. & Williamson, P. Regulation of phosphatidylserine exposure and phagocytosis of apoptotic T lymphocytes. Cell Death Differ. 6, 262–270 (1999).

    Article  CAS  Google Scholar 

  25. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  Google Scholar 

  26. Fadok, V. A., Bratton, D. L. & Henson, P. M. Phagocyte receptors for apoptotic cells; recognition, uptake and consequences J. Clin. Invest. (in the press).

  27. Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M. & Bratton, D. L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077 (2001).

    Article  CAS  Google Scholar 

  28. Krahling, S., Callahan, M. K., Williamson, P. & Schlegel, R. A. Exposure of phosphatidylserine is a general feature in the phagocytosis of apoptotic lymphocytes by macrophages. Cell Death Differ. 6, 183–189 (1999).

    Article  CAS  Google Scholar 

  29. Schlegel, R. A., Callahan, M., Krahling, S., Pradhan, D. & Williamson, P. Mechanisms for recognition and phagocytosis of apoptotic lymphocytes by macrophages. Adv. Exp. Med. Biol. 406, 21–28 (1996).

    Article  CAS  Google Scholar 

  30. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  Google Scholar 

  31. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  Google Scholar 

  32. Fadok, V. A., Bratton, D. L., Guthrie, L. A. & Henson, P. M. Differential effects of apoptotic vs. lysed cells on macrophage production of cytokines: Role of proteases. J. Immunol. 166, 6847–6854 (2001).

    Article  CAS  Google Scholar 

  33. Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368 (1998).

    Article  CAS  Google Scholar 

  34. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  Google Scholar 

  35. Stern, M., Savill, J. & Haslett, C. Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by αvβ3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am. J. Pathol. 149, 911–921 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).

    Article  CAS  Google Scholar 

  37. Basu, S., Binder, R. J., Suto, R., Anderson, K. M. & Srivastava, P. K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12, 1539–1546 (2000).

    Article  CAS  Google Scholar 

  38. Cocco, R. E. & Ucker, D. S. Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure. Mol. Biol. Cell 12, 919–930 (2001).

    Article  CAS  Google Scholar 

  39. Bennett, M. R., Gibson, D. F., Schwartz, S. M. & Tait, J. F. Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ. Res. 77, 1136–1142 (1995).

    Article  CAS  Google Scholar 

  40. Blankenberg, F. G. et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc. Natl Acad. Sci. USA 95, 6349–6354 (1998).

    Article  CAS  Google Scholar 

  41. Stach, C. M. et al. Treatment with annexin V increases immunogenicity of apoptotic human T-cells in Balb/c mice. Cell Death Differ. 7, 911–915 (2000).

    Article  CAS  Google Scholar 

  42. Birrer, P. et al. Protease–antiprotease imbalance in the lungs of children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 150, 207–213 (1994).

    Article  CAS  Google Scholar 

  43. Tenner, A. J. Membrane receptors for soluble defense collagens. Curr. Opin. Immunol. 11, 34–41 (1999).

    Article  CAS  Google Scholar 

  44. Rossen, R. D. et al. Cardiolipin–protein complexes and initiation of complement activation after coronary artery occlusion. Circ. Res. 75, 546–555 (1994).

    Article  CAS  Google Scholar 

  45. Pinckard, R. N. et al. Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction. J. Clin. Invest. 56, 740–750 (1975).

    Article  CAS  Google Scholar 

  46. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56–59 (1998).

    Article  CAS  Google Scholar 

  47. Sim, R. B. et al. Interaction of C1q and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology 199, 208–224 (1998).

    Article  CAS  Google Scholar 

  48. Ghebrehiwet, B. et al. Evidence that the two C1q binding membrane proteins, gC1q-R and cC1q-R, associate to form a complex. J. Immunol. 159, 1429–1436 (1997).

    CAS  PubMed  Google Scholar 

  49. Xiao, G., Chung, T. F., Fine, R. E. & Johnson, R. J. Calreticulin is transported to the surface of NG108-15 cells where it forms surface patches and is partially degraded in an acidic compartment. J. Neurosci. Res. 58, 652–662 (1999).

    Article  CAS  Google Scholar 

  50. Seddiki, N. et al. Calreticulin, a potential cell surface receptor involved in cell penetration of anti-DNA antibodies. J. Immunol. 166, 6423–6429 (2001).

    Article  CAS  Google Scholar 

  51. Holmskov, U. L. Collectins and collectin receptors in innate immunity. APMIS. 100, S1–S59 (2000).

    Google Scholar 

  52. Stuart, G. R., Lynch, N. J., Day, A. J., Schwaeble, W. J. & Sim, R. B. The C1q and collectin binding site within C1q receptor (cell surface calreticulin). Immunopharmacology 38, 73–80 (1997).

    Article  CAS  Google Scholar 

  53. Binder, R. J., Karimeddini, D. & Srivastava, P. K. Adjuvanticity of α2-macroglobulin, an independent ligand for the heat shock protein receptor CD91. J. Immunol. 166, 4968–4972 (2001).

    Article  CAS  Google Scholar 

  54. Misra, U. K., Gawdi, G. & Pizzo, S. V. Ligation of low-density lipoprotein receptor-related protein with antibodies elevates intracellular calcium and inositol-1,4,5-trisphosphate in macrophages. Arch. Biochem. Biophys. 372, 238–247 (1999).

    Article  CAS  Google Scholar 

  55. Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001).

    Article  CAS  Google Scholar 

  56. Basu, S. & Srivastava, P. K. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J. Exp. Med. 189, 797–802 (1999).

    Article  CAS  Google Scholar 

  57. Moestrup, S. K. The α2-macroglobulin receptor and epithelial glycoprotein-330: two giant receptors mediating endocytosis of multiple ligands. Biochim. Biophys. Acta 1197, 197–213 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

β1 integrin

β2 integrin

β3 integrin

CD14

ced-1

ced-2

ced-5

ced-12

ced-10

caspase-3

PKC-δ

PSR

LDLR

gas-6

TGF-β

interleukin-10

BMP

annexin V

elastase

emphysema

SP-A

SP-D

conglutinin

C1q

cC1qR

CD91

FURTHER INFORMATION

Henson lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henson, P., Bratton, D. & Fadok, V. The phosphatidylserine receptor: a crucial molecular switch?. Nat Rev Mol Cell Biol 2, 627–633 (2001). https://doi.org/10.1038/35085094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing