Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Single proteins might have dual but related functions in intracellular and extracellular microenvironments

Abstract

The maintenance of organ homeostasis and the control of an appropriate response to environmental alterations require the intimate coordination of cellular functions and tissue organization. An important component of this coordination could be provided by proteins that can have distinct but linked functions on both sides of the plasma membrane. We present a model that proposes that unconventional secretion provides a mechanism through which single proteins can integrate complex tissue functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of linked intracellular and extracellular roles for molecules of dual topology or multiple function.
Figure 2: Distinct motifs mediate the different functions of epimorphin and syntaxin 2.

Similar content being viewed by others

References

  1. Hirai, Y., Takebe, K., Takashina, M., Kobayashi, S. & Takeichi, M. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell 69, 471–481 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Radisky, D. C., Hirai, Y. & Bissell, M. J. Delivering the message: epimorphin and mammary epithelial morphogenesis. Trends Cell Biol. 13, 426–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hirai, Y. et al. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPβ. J. Cell Biol. 153, 785–794 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bascom, J. L., Fata, J. E., Hirai, Y., Sternlicht, M. D. & Bissell, M. J. Epimorphin overexpression in the mouse mammary gland promotes alveolar hyperplasia and mammary adenocarcinoma. Cancer Res. 65, 8617–8621 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hirai, Y., Bissell, M. J. & Radisky, D. C. Extracellular localization of epimorphin/syntaxin-2. Blood 110, 3082 (2007).

    Article  PubMed  Google Scholar 

  6. Ungar, D. & Hughson, F. M. SNARE protein structure and function. Annu. Rev. Cell Dev. Biol. 19, 493–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Bennett, M. K. et al. The syntaxin family of vesicular transport receptors. Cell 74, 863–873 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, D., Lemons, P. P., Schraw, T. & Whiteheart, S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood 96, 1782–1788 (2000).

    CAS  PubMed  Google Scholar 

  9. Abonyo, B. O. et al. Syntaxin 2 and SNAP-23 are required for regulated surfactant secretion. Biochemistry 43, 3499–3506 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Low, S. H. et al. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev. Cell 4, 753–759 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Pelham, H. R. Is epimorphin involved in vesicular transport? Cell 73, 425–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hirai, Y., Nakagawa, S. & Takeichi, M. Reexamination of the properties of epimorphin and its possible roles. Cell 73, 426–427 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Huttunen, H. J. & Rauvala, H. Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J. Intern. Med. 255, 351–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Lotze, M. T. & Tracey, K. J. High-mobility group BOX 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev. Immunol. 5, 331–342 (2005).

    Article  CAS  Google Scholar 

  15. Muller, S. et al. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 20, 4337–4340 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Fages, C., Nolo, R., Huttunen, H. J., Eskelinen, E. & Rauvala, H. Regulation of cell migration by amphoterin. J. Cell Sci. 113, 611–620 (2000).

    CAS  PubMed  Google Scholar 

  18. Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3, 995–1001 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agresti, A. & Bianchi, M. E. HMGB proteins and gene expression. Curr. Opin. Genet. Dev. 13, 170–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Thomas, J. O. & Travers, A. A. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem. Sci. 26, 167–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bianchi, M. E., Beltrame, M. & Paonessa, G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243, 1056–1059 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Stros, M., Muselikova-Polanska, E., Pospisilova, S. & Strauss, F. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry 43, 7215–7225 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Lorand, L. & Graham, R. M. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Rev. Mol. Cell Biol. 4, 140–156 (2003).

    Article  CAS  Google Scholar 

  24. Boehm, J. E., Singh, U., Combs, C., Antonyak, M. A. & Cerione, R. A. Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J. Biol. Chem. 277, 20127–20130 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Milakovic, T., Tucholski, J., McCoy, E. & Johnson, G. V. Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J. Biol. Chem. 279, 8715–8722 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Stephens, P. et al. Crosslinking and G-protein functions of transglutaminase 2 contribute differentially to fibroblast wound healing responses. J. Cell Sci. 117, 3389–3403 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Belkin, A. M. et al. Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J. Biol. Chem. 276, 18415–18422 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Aeschlimann, D. & Paulsson, M. Cross-linking of laminin–nidogen complexes by tissue transglutaminase. A novel mechanism for basement membrane stabilization. J. Biol. Chem. 266, 15308–15317 (1991).

    CAS  PubMed  Google Scholar 

  29. Akimov, S. S. & Belkin, A. M. Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFβ-dependent matrix deposition. J. Cell Sci. 114, 2989–3000 (2001).

    CAS  PubMed  Google Scholar 

  30. Verderio, E. A., Johnson, T. & Griffin, M. Tissue transglutaminase in normal and abnormal wound healing: review article. Amino Acids 26, 387–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Maxwell, C. A., McCarthy, J. & Turley, E. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell Sci. 121, 925–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Sharma, M. C. & Sharma, M. The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr. Pharm. Des. 13, 3568–3575 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Tomas, A., Futter, C. & Moss, S. E. Annexin 11 is required for midbody formation and completion of the terminal phase of cytokinesis. J. Cell Biol. 165, 813–822 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacob, R. et al. Annexin II is required for apical transport in polarized epithelial cells. J. Biol. Chem. 279, 3680–3684 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Torimura, T. et al. Autocrine motility factor enhances hepatoma cell invasion across the basement membrane through activation of β1 integrins. Hepatology 34, 62–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Tsutsumi, S. et al. The enzymatic activity of phosphoglucose isomerase is not required for its cytokine function. FEBS Lett. 534, 49–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Sun, Y. J. et al. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc. Natl Acad. Sci. USA 96, 5412–5417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Monferran, S., Muller, C., Mourey, L., Frit, P. & Salles, B. The membrane-associated form of the DNA repair protein Ku is involved in cell adhesion to fibronectin. J. Mol. Biol. 337, 503–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirai, Y. et al. Epimorphin functions as a key morphoregulator for mammary epithelial cells. J. Cell Biol. 140, 159–169 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pasheva, E. et al. In vitro acetylation of HMGB-1 and -2 proteins by CBP: the role of the acidic tail. Biochemistry 43, 2935–2940 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Ueda, T., Chou, H., Kawase, T., Shirakawa, H. & Yoshida, M. Acidic C-tail of HMGB1 is required for its target binding to nucleosome linker DNA and transcription stimulation. Biochemistry 43, 9901–9908 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Huttunen, H. J., Fages, C., Kuja-Panula, J., Ridley, A. J. & Rauvala, H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res. 62, 4805–4811 (2002).

    CAS  PubMed  Google Scholar 

  44. Pekkari, K. et al. Truncated thioredoxin (Trx80) exerts unique mitogenic cytokine effects via a mechanism independent of thiol oxido-reductase activity. FEBS Lett. 539, 143–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hirai, Y. Epimorphin as a morphogen: does a protein for intracellular vesicular targeting act as an extracellular signaling molecule? Cell Biol. Int. 25, 193–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hirai, Y. et al. Non-classical export of epimorphin and its adhesion to αv-integrin in regulation of epithelial morphogenesis. J. Cell Sci. 120, 2032–2043 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Nickel, W. & Seedorf, M. Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu. Rev. Cell Dev. Biol. 24, 287–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Prudovsky, I. et al. Secretion without Golgi. J. Cell. Biochem. 103, 1327–1343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22, 5551–5560 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kondo, N. et al. Redox-sensing release of human thioredoxin from T lymphocytes with negative feedback loops. J. Immunol. 172, 442–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Seelenmeyer, C., Stegmayer, C. & Nickel, W. Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles. FEBS Lett. 582, 1362–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Glasner, M. E., Gerlt, J. A. & Babbitt, P. C. Evolution of enzyme superfamilies. Curr. Opin. Chem. Biol. 10, 492–497 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Redfern, O. C., Dessailly, B. & Orengo, C. A. Exploring the structure and function paradigm. Curr. Opin. Struct. Biol. 18, 394–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aharoni, A. et al. The 'evolvability' of promiscuous protein functions. Nature Genet. 37, 73–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Jeffery, C. J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G. & Brunak, S. Feature based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17, 349–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Bendtsen, J. D., Kiemer, L., Fausboll, A. & Brunak, S. Non-classical protein secretion in bacteria. BMC Microbiol. 5, 58 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Keller, M., Ruegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Misura, K. M., Scheller, R. H. & Weis, W. I. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Tolg, C. et al. Rhamm−/− fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair. J. Cell Biol. 175, 1017–1028 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hamilton, S. R. et al. The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J. Biol. Chem. 282, 16667–16680 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Benhar, M., Forrester, M. T., Hess, D. T. & Stamler, J. S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320, 1050–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakamura, H. et al. Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc. Natl Acad. Sci. USA 98, 15143–15148 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work was supported by grants from the Office of Biological and Environmental Research of the Department of Energy (DE-AC03-76SF00098 and a Distinguished Fellow Award; to M.J.B.); the National Cancer Institute CA64786 (to M.J.B.), CA57621 (to M.J.B. and Z. Werb), CA122086 (to D.C.R.), CA128660 (to C. M. Nelson and D.C.R.) and the Breast Cancer Research Program of the Department of Defense (an Innovator Award; to M.J.B.).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro

SNARE motif

Protein Data Bank

1DN1

FURTHER INFORMATION

Derek C. Radisky's homepage

Yohei Hirai's homepage

Mina J. Bissell's homepage

SecretomeP 2.0 Server

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radisky, D., Stallings-Mann, M., Hirai, Y. et al. Single proteins might have dual but related functions in intracellular and extracellular microenvironments. Nat Rev Mol Cell Biol 10, 228–234 (2009). https://doi.org/10.1038/nrm2633

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing