Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Vaccines targeting drugs of abuse: is the glass half-empty or half-full?

Abstract

The advent of vaccines targeting drugs of abuse heralded a fundamentally different approach to treating substance-related disorders. In contrast to traditional pharmacotherapies for drug abuse, vaccines act by sequestering circulating drugs and terminating the drug-induced 'high' without inducing unwanted neuromodulatory effects. Drug-targeting vaccines have entered clinical evaluation, and although these vaccines show promise from a biomedical viewpoint, the ethical and socioeconomic implications of vaccinating patients against drugs of abuse merit discussion within the scientific community.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active and passive drug vaccines.
Figure 2: Incidence of drug use.

References

  1. Stowe, G. N. et al. A vaccine strategy that induces protective immunity against heroin. J. Med. Chem. 54, 5195–5204 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Nelson, A. L., Dhimolea, E. & Reichert, J. M. Development trends for human monoclonal antibody therapeutics. Nature Rev. Drug Discov. 9, 767–774 (2010).

    Article  CAS  Google Scholar 

  3. Anton, B. et al. Vaccines against morphine/heroin and its use as effective medication for preventing relapse to opiate addictive behaviors. Hum. Vaccin. 5, 214–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Carrera, M. R. et al. Cocaine vaccines: antibody protection against relapse in a rat model. Proc. Natl Acad. Sci. USA 97, 6202–6206 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Cerny, E. H. & Cerny, T. Vaccines against nicotine. Hum. Vaccin. 5, 200–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Haney, M., Gunderson, E. W., Jiang, H., Collins, E. D. & Foltin, R. W. Cocaine-specific antibodies blunt the subjective effects of smoked cocaine in humans. Biol. Psychiatry 67, 59–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Harvey, B. R. et al. Engineering of recombinant antibody fragments to methamphetamine by anchored periplasmic expression. J. Immunol. Methods 308, 43–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kantak, K. M. et al. Evaluation of anti-cocaine antibodies and a cocaine vaccine in a rat self-administration model. Psychopharmacology 148, 251–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Keyler, D. E., Roiko, S. A., Earley, C. A., Murtaugh, M. P. & Pentel, P. R. Enhanced immunogenicity of a bivalent nicotine vaccine. Int. Immunopharmacol. 8, 1589–1594 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Keyler, D. E. et al. Monoclonal nicotine-specific antibodies reduce nicotine distribution to brain in rats: dose- and affinity-response relationships. Drug Metab. Dispos. 33, 1056–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Lacy, H. M., Gunnell, M. G., Laurenzana, E. M. & Owens, S. M. Engineering and characterization of a mouse/human chimeric anti-phencyclidine monoclonal antibody. Int. Immunopharmacol. 8, 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. McClurkan, M. B., Valentine, J. L., Arnold, L. & Owens, S. M. Disposition of a monoclonal anti-phencyclidine Fab fragment of immunoglobulin G in rats. J. Pharmacol. Exp. Ther. 266, 1439–1445 (1993).

    CAS  PubMed  Google Scholar 

  13. McKenzie, K. M. et al. Identification and characterization of single chain anti-cocaine catalytic antibodies. J. Mol. Biol. 365, 722–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Owens, S. M. & Mayersohn, M. Phencyclidine-specific Fab fragments alter phencyclidine disposition in dogs. Drug Metab. Dispos. 14, 52–58 (1986).

    CAS  PubMed  Google Scholar 

  15. Pentel, P. R. et al. A nicotine conjugate vaccine reduces nicotine distribution to brain and attenuates its behavioral and cardiovascular effects in rats. Pharmacol. Biochem. Behav. 65, 191–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Peterson, E. C. et al. Using hapten design to discover therapeutic monoclonal antibodies for treating methamphetamine abuse. J. Pharmacol. Exp. Ther. 322, 30–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Peterson, E. C., Laurenzana, E. M., Atchley, W. T., Hendrickson, H. P. & Owens, S. M. Development and preclinical testing of a high-affinity single-chain antibody against (+)-methamphetamine. J. Pharmacol. Exp. Ther. 325, 124–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Roiko, S. A. et al. Combined active and passive immunization enhances the efficacy of immunotherapy against nicotine in rats. J. Pharmacol. Exp. Ther. 325, 985–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Schabacker, D. S., Kirschbaum, K. S. & Segre, M. Exploring the feasibility of an anti-idiotypic cocaine vaccine: analysis of the specificity of anticocaine antibodies (Ab1) capable of inducing Ab2β anti-idiotypic antibodies. Immunology 100, 48–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Treweek, J. B., Roberts, A. J. & Janda, K. D. Immunopharmacotherapeutic manifolds and modulation of cocaine overdose. Pharmacol. Biochem. Behav. 98, 474–484 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Pitas, G., Laurenzana, E. M., Williams, D. K., Owens, S. M. & Gentry, W. B. Anti-phencyclidine monoclonal antibody binding capacity is not the only determinant of effectiveness, disproving the concept that antibody capacity is easily surmounted. Drug Metab. Dispos. 34, 906–912 (2006).

    CAS  PubMed  Google Scholar 

  22. Ohmura, N., Lackie, S. J. & Saiki, H. An immunoassay for small analytes with theoretical detection limits. Anal. Chem. 73, 3392–3399 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Paula, S., Tabet, M. R., Farr, C. D., Norman, A. B. & Ball, W. J. J. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody. J. Med. Chem. 47, 133–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Valentine, J. L., Arnold, L. W. & Owens, S. M. Anti-phencyclidine monoclonal Fab fragments markedly alter phencyclidine pharmacokinetics in rats. J. Pharmacol. Exp. Ther. 269, 1079–1085 (1994).

    CAS  PubMed  Google Scholar 

  25. Covell, D. G. et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab')2, and Fab' in mice. Cancer Res. 46, 3969–3978 (1986).

    CAS  PubMed  Google Scholar 

  26. Holliger, P. & Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nature Biotech. 23, 1126–1136 (2005).

    Article  CAS  Google Scholar 

  27. Eddleston, M. & Persson, H. Acute plant poisoning and antitoxin antibodies. J. Toxicol. Clin. Toxicol. 41, 309–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Valentine, J. L. & Owens, S. M. Antiphencyclidine monoclonal antibody therapy significantly changes phencyclidine concentrations in brain and other tissues in rats. J. Pharmacol. Exp. Ther. 278, 717–724 (1996).

    CAS  PubMed  Google Scholar 

  29. Proksch, J. W., Gentry, W. B. & Owens, S. M. Anti-phencyclidine monoclonal antibodies provide long-term reductions in brain phencyclidine concentrations during chronic phencyclidine administration in rats. J. Pharmacol. Exp. Ther. 292, 831–837 (2000).

    CAS  PubMed  Google Scholar 

  30. Shelver, W. L. et al. Effects of recombinant drug-specific single chain antibody Fv fragment on [3H]-desipramine distribution in rats. Biochem. Pharmacol. 51, 531–537 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Keyler, D. E., Le Couteur, D. G., Pond, S. M., St. Peter, J. V. & Pentel, P. R. Effects of specific antibody Fab fragments on desipramine pharmacokinetics in the rat in vivo and in the isolated, perfused liver. J. Pharmacol. Exp. Ther. 272, 1117–1123 (1995).

    CAS  PubMed  Google Scholar 

  32. Butler, V. P. J. et al. Effects of digoxin-specific antibodies and their Fab fragments on digoxin pharmacokinetics in dogs. J. Clin. Invest. 59, 345–359 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Scherrmann, J. M. et al. Immunotoxicotherapy: present status and future trends. J. Toxicol. Clin. Toxicol. 27, 1–35 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Bird, R. E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Holton, O. D. et al. Biodistribution of monoclonal IgG1, F(ab')2, and Fab' in mice after intravenous injection. Comparison between anti-B cell (anti-Lyb8.2) and irrelevant (MOPC-21) antibodies. J. Immunol. 139, 3041–3049 (1987).

    CAS  PubMed  Google Scholar 

  36. Cornuz, J. et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS ONE 3, e2547 (2008).

    Article  PubMed  Google Scholar 

  37. Martell, B. A. et al. Cocaine vaccine for the treament of cocaine dependence: a randomized double-blind placebo-controlled efficacy trial. Arch. Gen. Psychiatry 66, 1116–1123 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Glenny, A. T., Pope, C. G., Waddington, H. & Wallace, U. Immunological notes. XXIII. The antigenic value of toxoid precipitated by potassium alum. J. Pathol. Bacteriol. 29, 38–39 (1926).

    Google Scholar 

  39. Grun, J. L. & Maurer, P. H. Different T helper cell subsets elicited in mice utilising two different adjuvant vehicles: the role of endogenous IL-1 in proliferative responses. Cell. Immunol. 121, 134–145 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Leroux-Roels, G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28, C25–C36 (2010).

    Article  PubMed  Google Scholar 

  41. Jordan, M. B., Mills, D. M., Kappler, J., Marrack, P. & Cambier, J. C. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304, 1808–1810 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Brewer, J. M. (How) do aluminium adjuvants work? Immunol. Lett. 102, 10–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Fox, B. S. et al. Efficacy of a therapeutic cocaine vaccine in rodent models. Nature Med. 2, 1129–1132 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Carrera, M. R. et al. Suppression of psychoactive effects of cocaine by active immunization. Nature 378, 727–730 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Tatsis, N. & Ertl, H. C. Adenoviruses as vaccine vectors. Mol. Ther. 10, 616–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Maurer, P. et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur. J. Immunol. 35, 2031–2040 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Hicks, M. J. et al. Cocaine analog coupled to disrupted adenovirus: a vaccine strategy to evoke high-titer immunity against addictive drugs. Mol. Ther. 19, 612–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Kornberg, A. Ten commandments: lessons from the enzymology of DNA replication J. Bacteriol. 182, 3613–3618 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Carrera, M. R., Ashley, J. A., Wirsching, P., Koob, G. F. & Janda, K. D. A second-generation vaccine protects against the psychoactive effects of cocaine. Proc. Natl Acad. Sci. USA 98, 1988–1992 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Moreno, A. Y. et al. A critical evaluation of a nicotine vaccine within a self-administration behavioral model. Mol. Pharm. 7, 431–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Hatsukami, D. K. et al. Immunogenicity and smoking-cessation outcomes for a novel nicotine immunotherapeutic. Clin. Pharmacol. Ther. 89, 392–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Lees, A. et al. Enhanced immunogenicity of protein–dextran conjugates: I. Rapid stimulation of enhanced antibody responses to poorly immunogenic molecules. Vaccine 12, 1160–1166 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Katsnelson, A. Ethical quagmire awaits vaccine for cocaine addiction. Nature Med. 10, 1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Cohen, P. J. Immunization for prevention and treatment of cocaine abuse: legal and ethical implications. Drug Alcohol Depend. 48, 167–174 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. National Research Council and Institute of Medicine. New Treatments for Addiction: Behavioral, Ethical, Legal, and Social Questions (eds Harwood, H. J. & Myers, T. G.) (The National Academies Press, Washington, District of Columbia, 2004).

  56. The National Center on Addiction and Substance Abuse (CASA). Shoveling Up II: The Impact of Substance Abuse on Federal, State and Local Budgets [online], (2009).

  57. Substance Abuse and Mental Health Services Administration. Results from the 2009 National Survey on Drug Use and Health: Volume I. Summary of National Findings [online], (2010).

  58. Silva, D. G., Cooper, P. D. & Petrovsky, N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immune responses. Immunol. Cell Biol. 82, 611–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lindblad, E. B., Elhay, M. J., Silva, R., Appelberg, R. & Andersen, P. Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infect. Immun. 65, 623–629 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Lindblad, E. B. Aluminium adjuvants — in retrospect and prospect. Vaccine 22, 3658–3668 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim D. Janda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kim D. Janda's homepage

Substance Abuse and Mental Health Services Administration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janda, K., Treweek, J. Vaccines targeting drugs of abuse: is the glass half-empty or half-full?. Nat Rev Immunol 12, 67–72 (2012). https://doi.org/10.1038/nri3130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3130

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology