Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

EvoD/Vo: the origins of BMP signalling in the neuroectoderm

Key Points

  • Signalling by bone morphogenetic proteins (BMPs) acts in a conserved all-or-none fashion to repress the expression of all neural genes in the epidermal ectoderm of bilaterian embryos.

  • The dorsal–ventral (D/V) axis of vertebrate embryos is likely to be inverted with respect to that of invertebrates.

  • BMP signalling represses expression of neural genes in dorsal regions of the central nervous system (CNS) in a threshold-dependent manner in the neural ectoderm of Drosophila melanogaster embryos.

  • BMPs also act in a dose-dependent manner to pattern the CNS of vertebrates and annelid worms.

  • Neural patterning mediated by threshold-dependent BMP repression might be ancestral to all metazoans.

  • D. melanogaster and vertebrates have different ventral patterning systems: flies use a gradient of the Dorsal transcription factor, whereas a gradient of secreted Sonic hedgehog is used in vertebrates.

  • Patterning systems that are present in ventral regions of the CNS act in concert with dorsally produced BMPs to refine and sharpen D/V patterning, and might have evolved independently in vertebrate and invertebrate lineages.

  • Genes, such as Hox genes, that control the initial steps in establishing anterior–posterior (A/P) cell fates might define abstract positional codes that allow for rapid morphological diversification; by contrast, comparable genes acting along the D/V axis might define conserved cell types.

  • To account for the conservation of both A/P and D/V regulators we propose a hypothesis, referred to as regulatory treadmilling, in which gene targets of A/P regulators turn over (or treadmill) more rapidly than those of D/V regulators.

Abstract

The genetic systems controlling body axis formation trace back as far as the ancestor of diploblasts (corals, hydra, and jellyfish) and triploblasts (bilaterians). Comparative molecular studies, often referred to as evo–devo, provide powerful tools for elucidating the origins of mechanisms for establishing the dorsal–ventral and anterior–posterior axes in bilaterians and reveal differences in the evolutionary pressures acting upon tissue patterning. In this Review, we focus on the origins of nervous system patterning and discuss recent comparative genetic studies; these indicate the existence of an ancient molecular mechanism underlying nervous system organization that was probably already present in the bilaterian ancestor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurulation in flies and vertebrates.
Figure 2: Neural induction in flies and vertebrates.
Figure 3: Patterning the neuroectoderm in flies.
Figure 4: BMP patterning in diverse organisms.
Figure 5: Regulatory treadmilling.

Similar content being viewed by others

References

  1. Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Valentine, J. W. On The Origin of Phyla (University of Chicago Press, Chicago, 2004).

    Google Scholar 

  3. De Robertis, E. M. Evo–devo: variations on ancestral themes. Cell 132, 185–195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Robertis, E. M. & Kuroda, H. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285–308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O'Connor, M. B., Umulis, D., Othmer, H. G. & Blair, S. S. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 133, 183–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Mizutani, C. M., Meyer, N., Roelink, H. & Bier, E. Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm. PLoS Biology 4, e313 (2006). Shows that BMPs act in a dose-dependent fashion to repress the expression of neural genes in dorsal and lateral regions of the D. melanogaster embryo; it also proposes that this might be a conserved mechanism for neural patterning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Denes, A. S. et al. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129, 277–288 (2007). Reveals remarkable similarities in the D/V organization of cell markers and cell types in the CNS of annelid worms and vertebrates.

    Article  CAS  PubMed  Google Scholar 

  8. Geoffroy St-Hilaire, E. Considérations générales sur la vertèbre (Translation: General considerations on vertebrates). Mém. Mus. Hist. Nat. 9, 89–119 (1822). In this paper, St-Hilaire suggests that the D/V axis in invertebrates is inverted with respect to that of vertebrates.

    Google Scholar 

  9. Bier, E. Anti-neural-inhibition: a conserved mechanism for neural induction. Cell 89, 681–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Ferguson, E. L. Conservation of dorsal–ventral patterning in arthropods and chordates. Curr. Opin. Genet. Dev. 6, 424–431 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Arendt, D. & Nubler-Jung, K. Inversion of dorsoventral axis? Nature 371, 26 (1994). Resuscitates the argument of St-Hilaire (reference 8) and A. Dohrn (reference 97) regarding a common origins of the D/V axis in vertebrates and invertebrates.

    Article  CAS  PubMed  Google Scholar 

  13. Francois, V. & Bier, E. Xenopus chordin and Drosophila short gastrulation genes encode homologous proteins functioning in dorsal–ventral axis formation. Cell 80, 19–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Francois, V., Solloway, M., O'Neill, J. W., Emery, J. & Bier, E. Dorsal–ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev. 8, 2602–2616 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Sasai, Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt, J., Francois, V., Bier, E. & Kimelman, D. Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal–ventral patterning. Development 121, 4319–4328 (1995).

    CAS  PubMed  Google Scholar 

  18. Schmierer, B. & Hill, C. S. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nature Rev. Mol. Cell Biol. 8, 970–982 (2007).

    Article  CAS  Google Scholar 

  19. Cornell, R. A. & Ohlen, T. V. vnd/Nkx, ind/Gsh, and msh/Msx: conserved regulators of dorsoventral neural patterning? Curr. Opin. Neurobiol. 10, 63–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, K. et al. Cysteine repeat domains and adjacent sequences determine distinct BMP modulatory activities of the Drosophila Sog protein. Genetics 166, 1323–1336 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, K. et al. Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. Development 127, 2143–2154 (2000).

    CAS  PubMed  Google Scholar 

  22. De Robertis, E. M. Spemann's organizer and self-regulation in amphibian embryos. Nature Rev. Mol. Cell Biol. 7, 296–302 (2006).

    Article  CAS  Google Scholar 

  23. Biehs, B., Francois, V. & Bier, E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev. 10, 2922–2934 (1996). Shows that the BMP antagonist SOG prevents BMPs from repressing neural gene expression in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  24. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of Chordin to BMP-4. Cell 86, 589–598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lamb, T. M. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, W. C., McKendry, R., Ribisi, S. Jr & Harland, R. M. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82, 37–46 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Jazwinska, A., Rushlow, C. & Roth, S. The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. Development 126, 3323–3334 (1999).

    CAS  PubMed  Google Scholar 

  28. Arora, K. et al. The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81, 781–790 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Grieder, N. C., Nellen, D., Burke, R., Basler, K. & Affolter, M. schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81, 791–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Staehling-Hampton, K., Laughon, A. S. & Hoffmann, F. M. A Drosophila protein related to the human zinc finger transcription factor PRDII/MBPI/HIV-EP1 is required for Dpp signaling. Development 121, 3393–3403 (1995).

    CAS  PubMed  Google Scholar 

  31. Muller, B., Hartmann, B., Pyrowolakis, G., Affolter, M. & Basler, K. Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient. Cell 113, 221–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Pyrowolakis, G., Hartmann, B., Muller, B., Basler, K. & Affolter, M. A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Dev. Cell 7, 229–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Stathopoulos, A. & Levine, M. Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. Dev. Biol. 280, 482–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Affolter, M. & Basler, K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nature Rev. Genet. 8, 663–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Chu, H., Parras, C., White, K. & Jimenez, F. Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev. 12, 3613–3624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Isshiki, T., Takeichi, M. & Nose, A. The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. Development 124, 3099–3109 (1997).

    CAS  PubMed  Google Scholar 

  38. Jimenez, F. et al. vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J. 14, 3487–3495 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McDonald, J. A. et al. Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev. 12, 3603–3612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Skeath, J. B., Panganiban, G. F. & Carroll, S. B. The ventral nervous system defective gene controls proneural gene expression at two distinct steps during neuroblast formation in Drosophila. Development 120, 1517–1524 (1994).

    CAS  PubMed  Google Scholar 

  41. Weiss, J. B. et al. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev. 12, 3591–3602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cowden, J. & Levine, M. Ventral dominance governs sequential patterns of gene expression across the dorsal–ventral axis of the neuroectoderm in the Drosophila embryo. Dev. Biol. 262, 335–349 (2003). Provides evidence that neural identity genes act in a hierarchical repressive cascade in which more ventrally expressed transcription factors repress the expression of more dorsal genes.

    Article  CAS  PubMed  Google Scholar 

  43. Barth, K. A. et al. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 4977–4987 (1999). Shows that BMPs can act over long distances to pattern the D/V axis of the zebrafish neural tube and that high-level signalling in the epidermis can inhibit expression of dorsal markers such as Msx genes.

    CAS  PubMed  Google Scholar 

  44. LaBonne, C. & Bronner-Fraser, M. Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, 2403–2414 (1998).

    CAS  PubMed  Google Scholar 

  45. Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Marchant, L., Linker, C., Ruiz, P., Guerrero, N. & Mayor, R. The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev. Biol. 198, 319–329 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Neave, B., Holder, N. & Patient, R. A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish. Mech. Dev. 62, 183–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen, V. H. et al. Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127, 1209–1220 (2000).

    CAS  PubMed  Google Scholar 

  49. Timmer, J. R., Wang, C. & Niswander, L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129, 2459–2472 (2002).

    CAS  PubMed  Google Scholar 

  50. Tribulo, C., Aybar, M. J., Nguyen, V. H., Mullins, M. C. & Mayor, R. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130, 6441–6452 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184 (1997).

    CAS  PubMed  Google Scholar 

  52. Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  53. Golden, J. A. et al. Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. Proc. Natl Acad. Sci. USA 96, 2439–2444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartley, K. O., Hardcastle, Z., Friday, R. V., Amaya, E. & Papalopulu, N. Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. Dev. Biol. 238, 168–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Pierani, A., Brenner-Morton, S., Chiang, C. & Jessell, T. M. A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97, 903–915 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Jacob, J. & Briscoe, J. Gli proteins and the control of spinal-cord patterning. EMBO Rep. 4, 761–765 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nederbragt, A. J., van Loon, A. E. & Dictus, W. J. Evolutionary biology: hedgehog crosses the snail's midline. Nature 417, 811–812 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Markstein, M. et al. A regulatory code for neurogenic gene expression in the Drosophila embryo. Development 131, 2387–2394 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. & Levine, M. Whole-genome analysis of dorsal–ventral patterning in the Drosophila embryo. Cell 111, 687–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Gomez-Skarmeta, J. L., Campuzano, S. & Modolell, J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nature Rev. Neurosci. 4, 587–598 (2003).

    Article  CAS  Google Scholar 

  61. Ruiz i Altaba, A., Nguyen, V. & Palma, V. The emergent design of the neural tube: prepattern, SHH morphogen and GLI code. Curr. Opin. Genet. Dev. 13, 513–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Bai, C. B., Stephen, D. & Joyner, A. L. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev. Cell 6, 103–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Lei, Q., Zelman, A. K., Kuang, E., Li, S. & Matise, M. P. Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord. Development 131, 3593–3604 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Litingtung, Y. & Chiang, C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nature Neurosci. 3, 979–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Persson, M. et al. Dorsal–ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev. 16, 2865–2878 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wijgerde, M., McMahon, J. A., Rule, M. & McMahon, A. P. A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev. 16, 2849–2864 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liem, K. F. Jr, Jessell, T. M. & Briscoe, J. Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127, 4855–4866 (2000). Shows that the BMP antagonist CHD, which is secreted by the ventrally located notochord, acts in concert with SHH to promote ventral cell fates, revealing the long-range action of dorsally produced BMPs.

    CAS  PubMed  Google Scholar 

  68. McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Conway Morris, S. Early metazoan evolution: reconciling paleontology and molecular biology. Am. Zool. 38, 867–877 (1998).

    Article  Google Scholar 

  70. Conway-Morris, S. The Cambrian 'explosion' of metazoans and molecular biology: would Darwin be satisfied? Int. J. Dev. Biol. 47, 505–515 (2003).

    PubMed  Google Scholar 

  71. Hayward, D. C. et al. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc. Natl Acad. Sci. USA 99, 8106–8111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Samuel, G., Miller, D. & Saint, R. Conservation of a DPP/BMP signaling pathway in the nonbilateral cnidarian Acropora millepora. Evol. Dev. 3, 241–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Reber-Muller, S. et al. BMP2/4 and BMP5–8 in jellyfish development and transdifferentiation. Int. J. Dev. Biol. 50, 377–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Rentzsch, F. et al. Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev. Biol. 296, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Finnerty, J. R., Pang, K., Burton, P., Paulson, D. & Martindale, M. Q. Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone. Science 304, 1335–1337 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Lowe, C. J. et al. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol. 4, e291 (2006). Examines the expression and function of BMPs in hemichordate embryos; it finds that although BMPs and SOG/CHD are expressed in opposing domains along the D/V axis, BMPs do not repress the formation of diffusely distributed neurons in the nearly rotationally symmetrical ectoderm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akiyama-Oda, Y. & Oda, H. Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133, 2347–2357 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. van der Zee, M., Stockhammer, O., von Levetzow, C., Nunes da Fonseca, R. & Roth, S. Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect. Proc. Natl Acad. Sci. USA 103, 16307–16312 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arendt, D., Denes, A. S., Jekely, G. & Tessmar-Raible, K. The evolution of nervous system centralization. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363, 1523–1528 (2008).

    Article  Google Scholar 

  80. Raible, F. & Arendt, D. Metazoan evolution: some animals are more equal than others. Curr. Biol. 14, R106–R108 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Lohmann, I. & McGinnis, W. Hox genes: it's all a matter of context. Curr. Biol. 12, R514–R516 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nature Rev. Genet. 6, 893–904 (2005). A review of the role of Hox genes in patterning the A/P axis. It suggests that they act by defining abstract positional codes.

    Article  CAS  PubMed  Google Scholar 

  83. Ocorr, K. et al. Genetic control of heart function and aging in Drosophila. Trends Cardiovasc. Med. 17, 177–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, M. N. & Bellen, H. J. Genetic dissection of synaptic transmission in Drosophila. Curr. Opin. Neurobiol. 7, 624–630 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Bier, E. Drosophila, the golden bug, emerges as a tool in human genetics. Nature Rev. Genet. 6, 9–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Lawrence, P. A., Ashburner, M. & Johnston, P. An attempt to hybridize Drosophila species using pole cell transplantation. Genetics 134, 1145–1148 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dohrn, A. Der Ursprung der Wirbelthiere und das Princip des Functionwecshels (Translation: The Origin of Vertebrates and the Principle of Successions of Functions) (Wilhelm Engelman, Leipzig, 1875). Dohrn re-examines the relationship between the D/V axes of vertebrate and invertebrate embryos and suggests that the invertebrate body plan is the ancestral state and that a new ventral oral opening might have formed during this evolutionary process.

    Google Scholar 

  88. Chang, T., Mazotta, J., Dumstrei, K., Dumitrescu, A. & Hartenstein, V. Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128, 4691–4704 (2001).

    CAS  PubMed  Google Scholar 

  89. Holland, N. D. Early central nervous system evolution: an era of skin brains? Nature Rev. Neurosci. 4, 617–627 (2003).

    Article  CAS  Google Scholar 

  90. Lowe, C. J. Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363, 1569–1578 (2008).

    Article  Google Scholar 

  91. Mizutani, C. M. & Bier, E. in The New Encyclopedia of Neuroscience (ed. L. Squire) (Elsevier, 2008) (in the press).

    Google Scholar 

  92. Arora, K., Levine, M. S. & O'Connor, M. B. The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. Genes Dev. 8, 2588–2601 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Padgett, R. W., St Johnston, R. D. & Gelbart, W. M. A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325, 81–84 (1987).

    Article  CAS  PubMed  Google Scholar 

  94. Wharton, K. A., Thomsen, G. H. & Gelbart, W. M. Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins. Proc. Natl Acad. Sci. USA 88, 9214–9218 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shimmi, O., Umulis, D., Othmer, H. & O'Connor, M. B. Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120, 873–886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brummel, T. J. et al. Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78, 251–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Letsou, A. et al. Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell 80, 899–908 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Penton, A. et al. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a Decapentaplegic receptor. Cell 78, 239–250 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347–1358 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Winter, S. E. & Campbell, G. Repression of Dpp targets in the Drosophila wing by Brinker. Development 131, 6071–6081 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Rushlow, C., Colosimo, P. F., Lin, M. C., Xu, M. & Kirov, N. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev. 15, 340–351 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kirkpatrick, H., Johnson, K. & Laughon, A. Repression of dpp targets by binding of brinker to mad sites. J. Biol. Chem. 276, 18216–18222 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Sutherland, D. J., Li, M., Liu, X. Q., Stefancsik, R. & Raftery, L. A. Stepwise formation of a SMAD activity gradient during dorsal–ventral patterning of the Drosophila embryo. Development 130, 5705–5716 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Srinivasan, S., Rashka, K. E. & Bier, E. Creation of a Sog morphogen gradient in the Drosophila embryo. Dev. Cell 2, 91–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Shimell, M. J., Ferguson, E. L., Childs, S. R. & O'Connor, M. B. The Drosophila dorsal–ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell 67, 469–481 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Marques, G. et al. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91, 417–426 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Mason, E. D., Konrad, K. D., Webb, C. D. & Marsh, J. L. Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev. 8, 1489–1501 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Oelgeschlager, M., Larrain, J., Geissert, D. & De Robertis, E. M. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757–763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Oelgeschlager, M. et al. The pro-BMP activity of Twisted gastrulation is independent of BMP binding. Development 130, 4047–4056 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Ross, J. J. et al. Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410, 479–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Scott, I. C. et al. Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling. Nature 410, 475–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Ashe, H. L. & Levine, M. Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature 398, 427–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Mizutani, C. M. et al. Formation of the BMP activity gradient in the Drosophila embryo. Dev. Cell 8, 915–924 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Y. C. & Ferguson, E. L. Spatial bistability of Dpp-receptor interactions during Drosophila dorsal–ventral patterning. Nature 434, 229–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Piccolo, S. et al. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chang, C. et al. Twisted gastrulation can function as a BMP antagonist. Nature 410, 483–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Larrain, J. et al. Proteolytic cleavage of Chordin as a switch for the dual activities of Twisted gastrulation in BMP signaling. Development 128, 4439–4447 (2001).

    CAS  PubMed  Google Scholar 

  120. Blitz, I. L., Shimmi, O., Wunnenberg-Stapleton, K., O'Connor, M. B. & Cho, K. W. Is chordin a long-range- or short-range-acting factor? Roles for BMP1-related metalloproteases in chordin and BMP4 autofeedback loop regulation. Dev. Biol. 223, 120–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Hama, J. & Weinstein, D. C. Is Chordin a morphogen? Bioessays 23, 121–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Hammerschmidt, M., Serbedzija, G. N. & McMahon, A. P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452–2461 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Ben-Zvi, D., Shilo, B. Z., Fainsod, A. & Barkai, N. Scaling of the BMP activation gradient in Xenopus embryos. Nature 453 1205–1211 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Stathopoulos, A. & Levine, M. Whole-genome expression profiles identify gene batteries in Drosophila. Dev. Cell 3, 464–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. von Ohlen, T. & Doe, C. Q. Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal–ventral columns. Dev. Biol. 224, 362–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Schmidt, J. E., von Dassow, G. & Kimelman, D. Regulation of dorsal–ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development 122, 1711–1721 (1996).

    CAS  PubMed  Google Scholar 

  128. Schmidt, J. E., Suzuki, A., Ueno, N. & Kimelman, D. Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev. Biol. 169, 37–50 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to E. Ball and D. Hayward of the Australian National University, Canberra, for supplying the image in figure 4b. We would like to thank W. McGinnis, S. Wasserman, R. Bodmer and R. Sousa-Neves, and members of the Bier laboratory for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bier laboratory homepage

Homophila: human disease gene cognates in Drosophila

The Interactive Fly

Society for Developmental Biology research links to other organisms

Glossary

Hemichordates

From the Greek hemi (half) and from the Latin chorda (cord). Marine worm-like animals that can be slow burrowers (acorn worms, for example) or sessile (pterobranchs, for example). The Hemichordata phylum is closely related to Echinodermata and Chordata phyla; together they constitute the Deuterostomata superphylum.

Echinoderms

From the Greek ekhinos (spiny) and derma (skin). Marine deuterostome animals that include sea stars, sea cucumbers and sea urchins. They possess bilateral symmetry during larval stages, but in adult life they become radially symmetrical.

Imaginal disc

Single layer of epithelial cells that forms a sac-like structure in the larvae and gives rise to adult appendages after metamorphosis (for example, wings, legs, antenna, eyes and genitalia).

Cuticle

A rigid layer of sclerotized chitin and cuticular proteins that covers the insect larval and adult epidermis and constitutes the exoskeleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mieko Mizutani, C., Bier, E. EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 9, 663–677 (2008). https://doi.org/10.1038/nrg2417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing