Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The distribution of fitness effects of new mutations

Key Points

  • The distribution of fitness effects (DFE) is a fundamental entity in genetics that describes what proportion of new mutations are advantageous, neutral or deleterious.

  • The shape of the DFE varies between species and depends on factors such as population size and genome size.

  • The DFE differs between coding and non-coding DNA.

  • Advantageous mutations are rare.

  • The DFE of strongly advantageous mutations has an exponential distribution.

  • The DFE of deleterious mutations is a complex, multi-modal distribution.

Abstract

The distribution of fitness effects (DFE) of new mutations is a fundamental entity in genetics that has implications ranging from the genetic basis of complex disease to the stability of the molecular clock. It has been studied by two different approaches: mutation accumulation and mutagenesis experiments, and the analysis of DNA sequence data. The proportion of mutations that are advantageous, effectively neutral and deleterious varies between species, and the DFE differs between coding and non-coding DNA. Despite these differences between species and genomic regions, some general principles have emerged: advantageous mutations are rare, and those that are strongly selected are exponentially distributed; and the DFE of deleterious mutations is complex and multi-modal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution of fitness effects of random mutations in vesicular stomatitis virus.
Figure 2: The distribution of fitnesses among yeast lines.
Figure 3: The distribution of fitness effects of new amino-acid-changing mutations in humans.
Figure 4: The evolution of the distribution of fitness effects (DFE) of advantageous mutations.

References

  1. Crow, J. F. How much do we know about spontaneous human mutation rates? Environ. Mol. Mutagen. 21, 122–129 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Kondrashov, A. S. & Crow, J. F. A molecular approach to estimating the human deleterious mutation rate. Hum. Mutat. 2, 229–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286 (1992).

    Article  Google Scholar 

  4. Loewe, L. Quantifying the genomic decay paradox due to Muller's ratchet in human mitochondrial DNA. Genet. Res. 87, 133–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Charlesworth, D., Charlesworth, B. & Morgan, M. T. The pattern of neutral molecular variation under the background selection model. Genetics 141, 1619–1632 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Peck, J. R., Barreau, G. & Heath, S. C. Imperfect genes, Fisherian mutation and the evolution of sex. Genetics 145, 1171–1199 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Caballero, A. & Keightley, P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics 138, 883–900 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, X. S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).

    Article  PubMed  Google Scholar 

  9. Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schultz, S. T. & Lynch, M. Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations and degree of outcrossing. Evolution 51, 1363–1371 (1997).

    Article  PubMed  Google Scholar 

  11. Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet. 17, 502–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, T. & Barton, N. H. Theoretical models of selection and mutation on quantitative traits. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1411–1425 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burch, C. L., Guyader, C., Samarov, D. & Shen, H. Experimental estimate of the abundance and effects of nearly neutral mutations in the RNA virus φ6. Genetics 176, 467–476 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elena, S. F., Ekunwe, L., Hajela, N., Oden, S. A. & Lenski, R. E. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102–103, 349–358 (1998).

  15. Sanjuan, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl Acad. Sci. USA 101, 8396–8401 (2004). Estimates the DFE for an RNA virus by measuring the fitness consequences of single mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thatcher, J. W., Shaw, J. M. & Dickinson, W. J. Marginal fitness contributions of nonessential genes in yeast. Proc. Natl Acad. Sci. USA 95, 253–257 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wloch, D. M., Szafraniec, K., Borts, R. H. & Korona, R. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics 159, 441–452 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mukai, T. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50, 1–19 (1964). The first mutation accumulation experiment.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohnishi, O. Spontaneous and ethyl methanesulfate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics 87, 529–545 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bataillon, T. Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity 84, 497–501 (2000).

    Article  PubMed  Google Scholar 

  21. Joseph, S. B. & Hall, D. W. Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 168, 1817–1825 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shaw, F. H., Geyer, C. J. & Shaw, R. G. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution 56, 453–463 (2002).

    Article  PubMed  Google Scholar 

  23. Bateman, A. J. The viability of near-normal irradiated chromosomes. Int. J. Radiat. Biol. 1, 170–180 (1959).

    Google Scholar 

  24. Garcia-Dorado, A. The rate and effects distribution of viable mutation in Drosophila: minimum distance estimation. Evolution 51, 1130–1139 (1997).

    PubMed  Google Scholar 

  25. Keightley, P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138, 1315–1322 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Keightley, P. D. Inference of genome wide mutation rates and distributions of mutations effects for fitness traits: a simulation study. Genetics 150, 1283–1293 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Davies, E. K., Peters, A. D. & Keightley, P. D. High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science 285, 1748–1751 (1999). Shows that most mutations are undectable in a mutation accumulation study and that the DFE of deleterious mutations must be complex and multi-modal.

    Article  CAS  PubMed  Google Scholar 

  28. Denver, D. R., Morris, K., Lynch, M. & Thomas, W. K. High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430, 679–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Eyre-Walker, A., Keightley, P. D., Smith, N. G. C. & Gaffney, D. Quantifying the slightly deleterious model of molecular evolution. Mol. Biol. Evol. 19, 2142–2149 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Loewe, L. & Charlesworth, B. Inferring the distribution of mutational effects on fitness in Drosophila. Biol. Lett. 2, 426–430 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Loewe, L., Charlesworth, B., Bartolome, C. & Noel, V. Estimating selection on nonsynonymous mutations. Genetics 172, 1079–1092 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nielsen, R. & Yang, Z. Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol. Biol. Evol. 20, 1231–1239 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Piganeau, G. & Eyre-Walker, A. Estimating the distribution of fitness effects from DNA sequence data: implications for the molecular clock. Proc. Natl Acad. Sci. USA 100, 10335–10340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawyer, S., Kulathinal, R. J., Bustamante, C. D. & Hartl, D. L. Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J. Mol. Evol. 57, S154–S164 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Bustamante, C. D., Wakeley, J., Sawyer, S. & Hartl, D. L. Directional selection and the site-frequency spectrum. Genetics 159, 1779–1788 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bubb, K. L. et al. Scan of human genome reveals no new loci under ancient balancing selection. Genetics 173, 2165–2177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimura, M. Genetic variability maintained in a finite population due to the mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269 (1968).

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, K. P. & Seger, J. Elevated rates of nonsynonymous substitution in island birds. Mol. Biol. Evol. 18, 874–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Woolfit, M. & Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 272, 2277–2282 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Silander, O. K., Tenaillon, O. & Chao, L. Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol. 5, e94 (2007). Shows that the DFE is highly dependent on the fitness of the population that is being considered.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Subramanian, S. & Kumar, S. Higher intensity of purifying selection on >90% of the human genes revealed by the intrinsic replacement mutation rates. Mol. Biol. Evol. 23, 2283–2287 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Eyre-Walker, A. Changing effective population size and the McDonald–Kreitman test. Genetics 162, 2017–2024 (2002).

    PubMed  PubMed Central  Google Scholar 

  44. Charlesworth, J. & Eyre-Walker, A. The rate of adaptive evolution in enteric bacteria. Mol. Biol. Evol. 23, 1348–1356 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Orgel, L. E. & Crick, F. H. C. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Shabalina, S. A. & Kondrashov, A. S. Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet. Res. 74, 23–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Webb, C. T., Shabalina, S. A., Ogurtsov, A. Y. & Kondrashov, A. S. Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic. Acids Res. 30, 1233–1239 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152 (2005). Provided the first evidence that adaptive evolution is widespread in Drosophila non-coding DNA.

    Article  CAS  PubMed  Google Scholar 

  50. Bergman, C. M. & Kreitman, M. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res. 11, 1335–1345 (2001). Provided the first indication that extensive amounts of Drosophila non-coding DNA is subject to selection.

    Article  CAS  PubMed  Google Scholar 

  51. Halligan, D. L. & Keightley, P. D. Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res. 16, 875–884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dermitzakis, E. T. et al. Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420, 578–582 (2002). Provided the clearest evidence that substantial amounts of mammalian non-coding DNA is subject to selective constraint.

    Article  CAS  PubMed  Google Scholar 

  53. Koop, B. F. Human and rodent DNA sequence comparisons: a mosaic model of genomic evolution. Trends Genet. 11, 367–371 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Shabalina, S. A., Ogurtsov, A. Y., Kondrashov, V. A. & Kondrashov, A. S. Selective constraint in intergenic regions of human and mouse genomes. Trends Genet. 17, 373–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  56. Dermitzakis, E. T., Reymond, A. & Antonarakis, S. E. Conserved non-genic sequences — an unexpected feature of mammalian genomes. Nature Rev. Genet. 6, 151–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Gaffney, D. & Keightley, P. D. Genomic selective constraints in murid noncoding DNA. PLoS Genet. 2, e204 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Eyre-Walker, A. The genomic rate of adaptive evolution. Trends Ecol. Evol. 21, 569–575 (2006).

    Article  PubMed  Google Scholar 

  59. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  60. Zhang, L. & Li, W.-H. Human SNPs reveal no evidence of frequent positive selection. Mol. Biol. Evol. 22, 2504–2507 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Bierne, N. & Eyre-Walker, A. Genomic rate of adaptive amino acid substitution in Drosophila. Mol. Biol. Evol. 21, 1350–1360 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Smith, N. G. C. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature 415, 1022–1024 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Welch, J. J. Estimating the genome-wide rate of adaptive protein evolution in Drosophila. Genetics 173, 821–837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bachtrog, D. & Andolfatto, P. Selection, recombination and demographic history in Drosophila miranda. Genetics 174, 2045–2059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Williamson, S. H. Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. Mol. Biol. Evol. 20, 1318–1325 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Keightley, P. D., Lercher, M. J. & Eyre-Walker, A. Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol. 3, e42 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gillespie, J. H. Molecular evolution over the mutational landscape. Evolution 38, 1116–1129 (1984).

    Article  CAS  PubMed  Google Scholar 

  68. Orr, H. A. The distribution of fitness effects among beneficial mutations. Genetics 163, 1519–1526 (2003). An extension of the work of Gillespie showing that the DFE of advantageous mutations should be an exponential distribution under certain simplifying assumptions.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Imhof, M. & Schlotterer, C. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl Acad. Sci. USA 98, 1113–1117 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kassen, R. & Bataillon, T. Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nature Genet. 38, 484–488 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Rokyta, D. R., Joyce, P., Caudle, S. B. & Wichman, H. A. An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus. Nature Genet. 37, 441–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Cowperthwaite, M. C., Bull, J. J. & Meyers, L. A. Distributions of beneficial fitness effects in RNA. Genetics 170, 1449–1457 (2005). Provided evidence that the DFE of advantageous mutations is not an exponential distribution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bratteler, M., Lexer, C. & Widmer, A. Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. J. Evol. Biol. 19, 1149–1156 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Lexer, C., Rosenthal, D. M., Raymond, O., Donovan, L. A. & Rieseberg, L. H. Genetics of species differences in the wild annual sunflowers, Helianthus annuus and H. petiolaris. Genetics 169, 2225–2239 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schemske, D. W. & Bradshaw, H. D. Jr. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl Acad. Sci. USA 96, 11910–11915 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mukai, T., Chigusa, S. I., Mettler, L. E. & Crow, J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 2, 333–355 (1972).

    Google Scholar 

  77. Vassilieva, L., Hook, A. M. & Lynch, M. The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution 54, 1234–1246 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Elena, S. F. & Moya, A. Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J. Evol. Biol. 12, 1078–1088 (1999).

    Article  Google Scholar 

  79. Zeyl, C. & DeVisser, J. A. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics 157, 53–61 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Avila, V. et al. Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster. Genetics 173, 267–277 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garcia-Dorado, A., Monedero, J. L. & Lopez-Fanjul, C. The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster. Genetica 102–103, 255–256 (1998).

    Article  PubMed  Google Scholar 

  82. Keightley, P. D. Nature of deleterious mutation load in Drosophila. Genetics 144, 1993–1999 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schoen, D. J. Deleterious mutation in related species of the plant genus Amsinckia with contrasting mating systems. Evolution 59, 2370–2377 (2005).

    Article  PubMed  Google Scholar 

  84. Garcia-Dorado, A. & Caballero, A. On the average coefficient of dominance of deleterious spontaneous mutations. Genetics 155, 1991–2001 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Peters, A. D., Halligan, D. L., Whitlock, M. C. & Keightley, P. D. Dominance and overdominance of mildly deleterious induced mutations for fitness traits in Caenorhabditis elegans. Genetics 165, 589–599 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shaw, R. G. & Chang, S. M. Gene action of new mutations in Arabidopsis thaliana. Genetics 172, 1855–1865 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Williamson, S. H. et al. Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc. Natl Acad. Sci. USA 102, 7882–7887 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, W.-H., Tanimura, M. & Sharp, P. M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J. Mol. Evol. 25, 330–342 (1987).

    Article  CAS  PubMed  Google Scholar 

  89. Ohta, T. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J. Mol. Evol. 40, 56–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Bush, E. C. & Lahn, B. T. Selective constraint on noncoding regions of hominid genomes. PLoS Comput. Biol. 1, e73 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Keightley, P. D., Kryukov, G. V., Sunyaev, S., Halligan, D. L. & Gaffney, D. J. Evolutionary constraints in conserved nongenic sequences of mammals. Genome Res. 15, 1373–1378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kryukov, G. V., Schmidt, S. & Sunyaev, S. Small fitness effect of mutations in highly conserved non-coding regions. Hum. Mol. Genet. 14, 2221–2229 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Lynch, M. et al. Spontaneous deleterious mutation. Evolution 53, 645–663 (1999).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Whitlock, S. Otto, A. Betancourt and four anonymous referees for many helpful comments on the manuscript. A.E.W. was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the National Evolutionary Synthesis Center. P.K. was supported by the Wellcome Trust and the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Eyre-Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Adam Eyre-Walker's homepage

Peter Keightley's homepage

Glossary

Muller's ratchet

The process by which a genome with little or no recombination degenerates owing to the stochastic loss of the allelic class with fewest deleterious mutations.

Kurtosis

The peakedness of the distribution.

Effective population size

The population size of randomly mating individuals that would behave, in a population genetic sense, as the population being studied. For example, the genetic diversity in human populations is the same as one would find in 10,000 randomly mating individuals.

Leptokurtic

Used here to refer to distributions that are more peaked than an exponential distribution.

Multi-modal

A distribution with more than one peak or mode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyre-Walker, A., Keightley, P. The distribution of fitness effects of new mutations. Nat Rev Genet 8, 610–618 (2007). https://doi.org/10.1038/nrg2146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing