Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evo–devo: extending the evolutionary synthesis

Abstract

Evolutionary developmental biology (evo–devo) explores the mechanistic relationships between the processes of individual development and phenotypic change during evolution. Although evo–devo is widely acknowledged to be revolutionizing our understanding of how the development of organisms has evolved, its substantial implications for the theoretical basis of evolution are often overlooked. This essay identifies major theoretical themes of current evo–devo research and highlights how its results take evolutionary theory beyond the boundaries of the Modern Synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A morphodynamic model relating shape change and gene activation in the development of mammalian molar teeth.
Figure 2: Generic forms that result from the interaction of basic cell properties with different pattern-forming mechanisms.

Similar content being viewed by others

References

  1. Laubichler, M. D. & Maienschein, J. (eds) From Embryology to Evo–Devo: A History of Developmental Evolution (MIT Press, Cambridge, 2007).

    Book  Google Scholar 

  2. Reid, R. G. B. Biological Emergences: Evolution by Natural Experiment (MIT Press, Cambridge, 2007).

    Book  Google Scholar 

  3. Bengtson, S. & Zhao, Y. Fossilized metazoan embryos from the earliest Cambrian. Science 277, 1645–1648 (1997).

    Article  Google Scholar 

  4. McKinney, M. L. & McNamara, K. J. Heterochrony (Plenum, New York, 1991).

    Book  Google Scholar 

  5. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Hallgrimsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F. & Jirik, F. R. Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol. Dev. 9, 76–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. McGhee, G. R. The Geometry of Evolution (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  8. Arthur, W. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A. & Gehring, W. J. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403–408 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic, San Diego, 2006).

    Google Scholar 

  11. Wilkins, A. The Evolution of Developmental Pathways (Sinauer Associates, Sunderland, 2002).

    Google Scholar 

  12. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity (Blackwell Science, Malden, 2005).

    Google Scholar 

  13. Alberch, P. & Gale, E. A. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution 39, 8–23 (1985).

    Article  PubMed  Google Scholar 

  14. Müller, G. B., Streicher, J. & Müller, R. Homeotic duplication of the pelvic body segment in regenerating tadpole tails induced by retinoic acid. Dev. Genes Evol. 206, 344–348 (1996).

    Article  PubMed  Google Scholar 

  15. Schlichting, C. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer, Sunderland, 1998).

    Google Scholar 

  16. Hall, B. K., Pearson, B. J. & Müller, G. B. (eds) Environment, Development, and Evolution (MIT Press, Cambridge, 2003).

    Book  Google Scholar 

  17. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  18. Jernvall, J., Keranen, S. V. & Thesleff, I. Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc. Natl Acad. Sci. USA 97, 14444–14448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Streicher, J. et al. Computer based three-dimensional visualization of developmental gene expression. Nature Genet. 25, 147–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Weninger, W. J. et al. High resolution episcopic microscopy: rapid 3D-analysis of gene expression and tissue architecture. Anat. Embryol. 211, 213–221 (2006).

    Article  Google Scholar 

  21. Costa, L. D. F. et al. A field approach to three-dimensional gene expression pattern characterization. Appl. Physics Lett. 86, 143901–143903 (2005).

    Article  CAS  Google Scholar 

  22. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K. & Bookstein, F. Comparison of cranial ontogenetic trajectories among hominoids. J. Hum. Evol. 46, 679–697 (2004).

    Article  PubMed  Google Scholar 

  23. Hallgrimsson, B. et al. The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evol. Dev. 8, 61–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Hentschel, H. G., Glimm, T., Glazier, J. A. & Newman, S. A. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B Biol. Sci. 271, 1713–1722 (2004).

    Article  CAS  Google Scholar 

  25. Salazar-Ciudad, I., Newman, S. A. & Sole, R. V. Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype–phenotype relationships. Evol. Dev. 3, 84–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Newman, S. A. & Müller, G. B. Epigenetic mechanisms of character origination. J. Exp. Zool. B Mol. Dev. Evol. 288, 304–317 (2000).

    Article  CAS  Google Scholar 

  27. Stone, J. R. & Wray, G. A. Rapid evolution of cis-regulatory sequences via local point mutations. Mol. Biol. Evol. 18, 1764–1770 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Jordan, I. K., Rogozin, I. B., Glazko, G. V. & Koonin, E. V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lynch, M. & Conery, J. S. The evolutionary demography of duplicate genes. J. Struct. Funct. Genomics 3, 35–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Oleksiak, M. F., Churchill, G. A. & Crawford, D. L. Variation in gene expression within and among natural populations. Nature Genet. 32, 261–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X. & Chamberlin, H. M. Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. Genes Dev. 16, 2345–2349 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carter, A. J. & Wagner, G. P. Evolution of functionally conserved enhancers can be accelerated in large populations: a population-genetic model. Proc. Biol. Sci. 269, 953–960 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Patel, N. H. The evolution of arthropod segmentation: insights from comparisons of gene expression patterns. Dev. Suppl. 1994, 201–207 (1994).

    Google Scholar 

  34. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

    CAS  PubMed  Google Scholar 

  35. Abzhanov, A. & Kaufman, T. C. Homeotic genes and the arthropod head: expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects. Proc. Natl Acad. Sci. USA 96, 10224–10229 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wagner, G. P. & Chiu, C. H. The tetrapod limb: a hypothesis on its origin. J. Exp. Zool. B Mol. Dev. Evol. 291, 226–240 (2001).

    Article  CAS  Google Scholar 

  37. Hall, B. K. Developmental processes underlying heterochrony as an evolutionary mechanism. Can. J. Zool. 62, 1–7 (1984).

    Article  Google Scholar 

  38. Raff, R. A. & Wray, G. A. Heterochrony: developmental mechanisms and evolutionary results. J. Evol. Biol. 2, 409–434 (1989).

    Article  Google Scholar 

  39. Maynard Smith, J. et al. Developmental constraints and evolution. Q. Rev. Biol. 60, 265–287 (1985).

    Article  Google Scholar 

  40. von Dassow, G. & Munro, E. Modularity in animal development and evolution: elements of a conceptual framework for evodevo. J. Exp. Zool. B Mol. Dev. Evol. 285, 307–325 (1999).

    Article  CAS  Google Scholar 

  41. Schlosser, G. & Wagner, G. P. (eds) Modularity in Development and Evolution (Univ. Chicago Press, Chicago, 2004).

    Google Scholar 

  42. Callebaut, W. & Rasskin-Gutman, D. Modularity: Understanding the Development and Evolution of Complex Natural Systems (MIT Press, Cambridge, 2005).

    Book  Google Scholar 

  43. Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    Article  PubMed  Google Scholar 

  44. Müller, G. B. in Origination of Organismal Form (eds Müller, G. B. & Newman, S. A.) 51–69 (MIT Press, Cambridge, 2003).

    Book  Google Scholar 

  45. Wagner, G. P. The developmental genetics of homology. Nature Rev. Genet. 8, 473–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Pigliucci, M., Schlichting, C. D., Jones, C. S. & Schwenk, K. Developmental reaction norms: the interactions among allometry, ontogeny, and plasticity. Plant Species Biol. 11, 69–85 (1996).

    Article  Google Scholar 

  47. Roskam, J. C. & Brakefield, P. M. Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues. Biol. J. Linn. Soc. Lond. 66, 345–356 (1999).

    Google Scholar 

  48. Tollrian, R. & Harvell, C. D. (eds) The Ecology and Evolution of Inducible Defenses (Princeton Univ. Press, Princeton, 1999).

    Google Scholar 

  49. Newlon, A. W. 3rd, Yund, P. O. & Stewart-Savage, J. Phenotypic plasticity of reproductive effort in a colonial ascidian, Botryllus schlosseri. J. Exp. Zoolog. Part A Comp. Exp. Biol. 297, 180–188 (2003).

    Article  Google Scholar 

  50. Nijhout, H. F. Control mechanisms of polyphenic development in insects. BioScience 49, 181–192 (1999).

    Article  Google Scholar 

  51. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Love, A. C. Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biol. Philos. 18, 309–345 (2003).

    Article  Google Scholar 

  53. Müller, G. B. & Newman, S. A. (eds) Evolutionary innovation and morphological novelty. J. Exp. Zool. B Mol. Dev. Evol. 304, Special issue (2005).

  54. Brunetti, C. R. et al. The generation and diversification of butterfly eyespot color patterns. Curr. Biol. 11, 1578–1585 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Averof, M. & Cohen, S. M. Evolutionary origin of insect wings from ancestral gills. Nature 385, 627–630 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, P. N., Callaerts, P., De Couet, H. G. & Martindale, M. Q. Cephalopod Hox genes and the origin of morphological novelties. Nature 424, 1061–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sordino, P., van der Hoeven, F. & Duboule, D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375, 678–681 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Prum, R. O. Development and evolutionary origin of feathers. J. Exp. Zool. B Mol. Dev. Evol. 285, 291–306 (1999).

    Article  CAS  Google Scholar 

  59. Gilbert, S. F., Loredo, G. A., Brukman, A. & Burke, A. C. Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol. Dev. 3, 47–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Newman, S. A. & Comper, W. D. 'Generic' physical mechanisms of morphogenesis and pattern formation. Development 110, 1–18 (1990).

    CAS  PubMed  Google Scholar 

  61. Müller, G. B. in From Embryology to Evo–Devo: A History of Embryology in the 20th Century (eds Laubichler, M. D. & Maienschein, J.) 499–524 (MIT Press, Cambridge, 2007).

    Google Scholar 

  62. Salazar-Ciudad, I. & Jernvall, J. A gene network model accounting for development and evolution of mammalian teeth. Proc. Natl Acad. Sci. USA 99, 8116–8120 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nachman, M. W., Hoekstra, H. E. & D'Agostino, S. L. The genetic basis of adaptive melanism in pocket mice. Proc. Natl Acad. Sci. USA 100, 5268–5273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wittkopp, P. J., Carroll, S. B. & Kopp, A. Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet. 19, 495–504 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Wagner, A. Robustness and Evolvability in Living Systems (Princeton Univ. Press, Princeton, 2005).

    Google Scholar 

  66. Collins, J. P., Gilbert, S., Laubichler, M. D. & Müller, G. B. in Modeling Biology: Structures, Behaviors, Evolution (eds Laubichler, M. & Müller, G. B.) 355–378 (MIT Press, Cambridge, 2007).

    Google Scholar 

  67. Pigliucci, M. Phenotypic Plasticity: Beyond Nature and Nurture (Johns Hopkins Univ. Press, Baltimore, 2001).

    Google Scholar 

  68. Deacon, T. W. Reciprocal linkage between self-organizing processes is sufficient for self-reproduction and evolvability. Biol. Theor. 1, 136–149 (2006).

    Article  Google Scholar 

  69. Raff, R. The Shape of Life (Chicago Univ. Press, Chicago, 1996).

    Book  Google Scholar 

  70. Minelli, A. The Development of Animal Form: Ontogeny, Morphology, and Evolution (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  71. Holland, L. Z., Holland, P. W. & Holland, N. D. in Molecular Zoology (eds Ferraris, J. D. & Palumbi, S. R.) 267–295 (Wiley-Liss, New York, 1996).

    Google Scholar 

  72. Bolker, J. A. & Raff, R. A. Developmental genetics and traditional homology. BioEssays 18, 489–494 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Minelli, A. Molecules, developmental modules, and phenotypes: a combinatorial approach to homology. Mol. Phylogenet. Evol. 9, 340–347 (1997).

    Article  Google Scholar 

  74. Wray, G. A. in Homology (eds Bock, G. R. & Cardew, G.) 189–203 (Wiley, Chichester, 1999).

    Google Scholar 

  75. Wagner, G. P. The biological homology concept. Annu. Rev. Ecol. Syst. 20, 51–69 (1989).

    Article  Google Scholar 

  76. Love, A. C. & Raff, R. Larval ectoderm, organizational homology, and the origins of evolutionary novelty. J. Exp. Zool. B Mol. Dev. Evol. 306, 18–34 (2005).

    Google Scholar 

  77. Jablonka, E. & Lamb, M. J. Evolution in Four Dimensions (MIT Press, Cambridge, 2005).

    Google Scholar 

  78. Wray, G. A. & Raff, R. A. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Dev. Biol. 132, 458–470 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Wray, G. A. & Raff, R. A. Rapid evolution of gastrulation mechanisms in a sea urchin with lecithotrophic larvae. Evolution 45, 1741–1750 (1991).

    Article  PubMed  Google Scholar 

  80. Felix, M. A. Evolution of developmental mechanisms in nematodes. J. Exp. Zool. 285, 3–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Sommer, R. J. & Sternberg, P. W. Evolution of nematode vulval fate patterning. Dev. Biol. 173, 396–407 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Newman, S. A., Forgacs, G. & Müller, G. B. Before programs: the physical origination of multicellular forms. Int. J. Dev. Biol. 50, 289–299 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The perspective of evo–devo represented in this article has greatly benefited from discussions with W. Callebaut, M. Laubichler, S. Newman, M. Pigliucci, J. Schwarz, G. P. Wagner and the members of my department.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Lorenz Institute for Evolution and Cognition Research

University of Vienna, Department of Theoretical Biology

Glossary

Canalization

The developmental buffering of phenotypic traits against genetic and environmental perturbations.

Generative bias

A tendency in the production of phenotypic variation or innovation that is caused by the properties of the developmental system.

Generic form

Biological forms that result from the autonomous interactions within and among cell aggregates, based on their physical properties, without a programme-like genetic control.

Genotype–phenotype map

A mathematical characterization of the correspondence of a set of genotypes with a set of phenotypes.

Heterochrony

Evolutionary changes in the timing of developmental events, such as the onset, offset or tempo of a process.

Homeotic transformation

The change of one body part into another, caused by a genetic or epigenetic perturbation of development.

Morphospace

A three-dimensional matrix of possible morphologies that is larger than the set of actual morphologies that are realized in nature.

Modern Synthesis

The prevailing theoretical framework of evolution that resulted from a combination of genetics, systematics, comparative morphology and palaeontology in the 1930s and 1940s. Also called Evolutionary Synthesis or Synthetic Theory.

Mechanochemical excitability

The capacity of cells to respond to physical and chemical stimuli.

Ontogeny

The course of individual development of an organism from the fertilized egg to the adult.

Phenocopy

An epigenetically induced phenotypic character that resembles a genetically determined character.

Polyphenism

Alternative phenotypes that arise from a single genotype as a result of differing environmental conditions.

Viscoelastic

Materials, such as cell masses, that have both viscous and elastic properties when they respond to strain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G. Evo–devo: extending the evolutionary synthesis. Nat Rev Genet 8, 943–949 (2007). https://doi.org/10.1038/nrg2219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing