Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissecting the complex genetic basis of mate choice

Key Points

  • Most studies of the genetic basis of mate choice focus on male sexually selected traits and the corresponding female preferences.

  • Male sexually selected traits tend to exhibit multi-component phenotypes. Investigations of the genetic basis of mate choice should therefore not only consider that a number of different types of trait might be under sexual selection, but that each trait could be multidimensional in nature.

  • Genetic studies of mate choice should first determine which male traits are under sexual selection. Mate choice experiments enable the formal analysis of the form of sexual selection operating on male traits.

  • Quantitative genetic analyses of male traits and the female preferences for them have established the presence of genetic variance in these traits in many experimental systems. The genetic analysis of female preferences, however, tends to be more difficult, and the genetic analyses of female preference functions using genetic covariance functions have yet to be conducted.

  • Male sexually selected traits are likely to be influenced by indirect genetic effects as males can change their displays in response to the phenotype, and therefore genotype, of the female being displayed to. Although indirect genetic effects on male sexually selected traits have been identified, the evolutionary implications of their presence have yet to be tested.

  • Caution needs to be applied in experimental studies to ensure that naturally occurring genetic variation in mate choice is the target of investigation. For example, the ability of a mutagenic allele to affect trait expression does not necessarily demonstrate that allelic variation at that locus generates naturally occurring genetic variance in the trait.

  • QTL analyses have successfully identified genomic regions that make large contributions to male traits.

  • Transcriptional profiling experiments are beginning to be used in investigations of mate choice. Making sense of the large number of transcripts that are likely to be involved will be a considerable challenge.

  • The genetic analysis of multiple traits is a key issue for investigations of male sexually selected traits. Combining transcriptional profiling experiments with multivariate quantitative genetic approaches holds considerable promise in addressing the complex nature of phenotypes that are involved in mate choice.

Abstract

The genetic analysis of mate choice is fraught with difficulties. Males produce complex signals and displays that can consist of a combination of acoustic, visual, chemical and behavioural phenotypes. Furthermore, female preferences for these male traits are notoriously difficult to quantify. During mate choice, genes not only affect the phenotypes of the individual they are in, but can influence the expression of traits in other individuals. How can genetic analyses be conducted to encompass this complexity? Tighter integration of classical quantitative genetic approaches with modern genomic technologies promises to advance our understanding of the complex genetic basis of mate choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complexity of male sexually selected traits.

Similar content being viewed by others

References

  1. Brooks, R. & Endler, J. A. Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). Evolution 55, 1002–1015 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Verhulst, S., Dieleman, S. J. & Parmentier, H. K. A tradeoff between immunocompetence and sexual ornamentation in domestic fowl. Proc. Natl Acad. Sci. USA 96, 4478–4481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blount, J. D., Metcalfe, N. B., Birkhead, T. R. & Surai, P. F. Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300, 125–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. B. 263, 1415–1421 (1996). Presents the influential theory of the evolution of condition-dependent expression of male sexually selected traits. Predicts that variation in such traits will be a consequence of alleles at many loci, and will display high levels of genetic variance.

    Article  Google Scholar 

  5. Hunt, J., Bussiere, L. F., Jennions, M. D. & Brooks, R. What is genetic quality? Trends Ecol. Evol. 19, 329–333 (2004).

    Article  PubMed  Google Scholar 

  6. Anholt, R. R. H. & Mackay, T. F. C. Quantitative genetic analyses of complex behaviours in Drosophila. Nature Rev. Genet. 5, 838–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Kocher, T. D. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Rev. Genet. 5, 288–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, C. I. & Ting, C. T. Genes and speciation. Nature Rev. Genet. 5, 114–122 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, Massachusetts, 2004).

    Google Scholar 

  10. Ortiz-Barrientos, D. & Noor, M. A. F. Evidence for a one-allele assortative mating locus. Science 310, 1467 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bakker, T. C. M. & Pomiankowski, A. The genetic basis of female mate preferences. J. Evol. Biol. 8, 129–171 (1995).

    Article  Google Scholar 

  12. Pomiankowski, A. & Moller, A. P. A resolution of the lek paradox. Proc. R. Soc. Lond. B. 260, 21–29 (1995).

    Article  Google Scholar 

  13. Darwin, C. The Descent of Man and Selection in Relation to Sex (John Murray, London, 1874).

    Book  Google Scholar 

  14. Boake, C. R. B. et al. Genetic tools for studying adaptation and the evolution of behavior. Am. Nat. 160, S143–S159 (2002).

    Article  PubMed  Google Scholar 

  15. Shaw, K. L. & Parsons, Y. M. Divergence of mate recognition behavior and its consequences for genetic architectures of speciation. Am. Nat. 159, S61–S75 (2002).

    Article  PubMed  Google Scholar 

  16. Velthuis, B. J., Yang, W. C., van Opijnen, T. & Werren, J. H. Genetics of female mate discrimination of heterospecific males in Nasonia (Hymenoptera, Pteromalidae). Anim. Behav. 69, 1107–1120 (2005).

    Article  Google Scholar 

  17. Gleason, J. M. & Ritchie, M. G. Do quantitative trait loci (QTL) for a courtship song difference between Drosophila simulans and D. sechellia coincide with candidate genes and intraspecific QTL? Genetics 166, 1303–1311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gleason, J. M. Mutations and natural genetic variation in the courtship song of Drosophila Behav. Genet. 35, 265–277 (2005). Demonstrates that the association between the genetic basis of interspecific differences and segregating variation within populations might not be straightforward.

    Article  PubMed  Google Scholar 

  19. Moore, A. J., Brodie, E. D. & Wolf, J. B. Interacting phenotypes and the evolutionary process. 1. Direct and indirect genetic effects of social interactions. Evolution 51, 1352–1362 (1997). Develops the theory behind indirect genetic effects and their evolutionary consequences.

    Article  PubMed  Google Scholar 

  20. Kirkpatrick, M. Sexual selection by female choice in polygynous animals. Annu. Rev. Ecol. Syst. 18, 43–70 (1987).

    Article  Google Scholar 

  21. Kokko, H., Brooks, R., Jennions, M. D. & Morley, J. The evolution of mate choice and mating biases. Proc. R. Soc. Lond. B. 270, 653–664 (2003).

    Article  Google Scholar 

  22. Mead, L. S. & Arnold, S. J. Quantitative genetic models of sexual selection. Trends Ecol. Evol. 19, 264–271 (2004).

    Article  PubMed  Google Scholar 

  23. Tomkins, J. L., Radwan, J., Kotiaho, J. S. & Tregenza, T. Genic capture and resolving the lek paradox. Trends Ecol. Evol. 19, 323–328 (2004).

    Article  PubMed  Google Scholar 

  24. Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. Lond. B. 271, 771–783 (2004).

    Article  Google Scholar 

  25. David, P., Bjorksten, T., Fowler, K. & Pomiankowski, A. Condition-dependent signalling of genetic variation in stalk-eyes flies. Nature 406, 186–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kotiaho, J. S., Simmons, L. W. & Tomkins, J. L. Towards a resolution of the lek paradox. Nature 410, 684–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hine, E., Chenoweth, S. F. & Blows, M. W. Multivariate quantitative genetics and the lek paradox: genetic variance in male sexually selected traits of Drosophila serrata under field conditions. Evolution 58, 2754–2762 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Fitzpatrick, M. J. Pleiotropy and the genomic location of sexually selected genes. Am. Nat. 163, 800–808 (2004).

    Article  PubMed  Google Scholar 

  29. Petfield, D., Chenoweth, S. F., Rundle, H. D. & Blows, M. W. Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. Proc. Natl Acad. Sci. USA 102, 6045–6050 (2005). Presents the first experimental evidence for the presence of indirect genetic effects on male sexually selected traits. Indicates that males change their cuticular hydrocarbon profile in response to the phenotypes of females in a highly repeatable fashion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolf, J. B. Genetic architecture and evolutionary constraint when the environment contains genes. Proc. Natl Acad. Sci. USA 100, 4655–4660 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Higgins, L. A., Jones, K. M. & Wayne, M. L. Quantitative genetics of natural variation of behavior in Drosophila melanogaster: The possible role of the social environment on creating persistent patterns of group activity. Evolution 59, 1529–1539 (2005).

    Article  PubMed  Google Scholar 

  32. Moore, A. J., Haynes, K. F., Preziosi, R. F. & Moore, P. J. The evolution of interacting phenotypes: genetics and evolution of social dominance. Am. Nat. 160, S186–S197 (2002).

    Article  PubMed  Google Scholar 

  33. Jennions, M. D. & Petrie, M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. Camb. Philos. Soc. 72, 283–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Amundsen, T. Why are female birds ornamented? Trends Ecol. Evol. 15, 149–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Kokko, H. & Johnstone, R. A. Why is mutual mate choice not the norm? Operational sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic signalling. Philos. Trans. R. Soc. Lond. B. 357, 319–330 (2002).

    Article  Google Scholar 

  36. Chenoweth, S. F. & Blows, M. W. Contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. Am. Nat. 165, 281–289 (2005).

    Article  PubMed  Google Scholar 

  37. Wagner, W. E. Measuring female mating preferences. Anim. Behav. 55, 1029–1042 (1998). A carefully argued paper that distinguishes between various types of mating preferences and how to measure them.

    Article  CAS  PubMed  Google Scholar 

  38. Houde, A. E. & Endler, J. A. Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science 248, 1405–1408 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Rundle, H. D., Chenoweth, S. F., Doughty, P. & Blows, M. W. Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol. 3, e368 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Majerus, M. E. N., O'Donald, P. & Weir, J. Female mating preference is genetic. Nature 300, 521–523 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Kearns, P. W. E., Tomlinson, I. P. M., Veltman, C. J. & O'Donald, P. Nonrandom mating in Adalia bipunctata (the 2–spot ladybird). 2. Further tests for female mating preference. Heredity 68, 385–389 (1992).

    Article  Google Scholar 

  42. Houde, A. E. Effect of artificial selection on male color patterns on mating preference of female guppies. Proc. R. Soc. Lond. B. 256, 125–130 (1994).

    Article  Google Scholar 

  43. Breden, F. & Hornaday, K. Test of indirect models of selection in the Trinidad guppy. Heredity 73, 291–297 (1994).

    Article  Google Scholar 

  44. Hall, M., Lindholm, A. K. & Brooks, R. Direct selection on male attractiveness and female preference fails to produce a response. BMC Evol. Biol. 4, 1 (2004). A selection experiment using guppies that reported the surprising result that male attractiveness, as defined by female guppies, failed to respond to selection even though male sexually selected traits are highly heritable in this species.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wilkinson, G. S. Artificial sexual selection alters allometry in the stalk-eyed fly Cyrtodiopsis dalmanni (Diptera, Diopsidae). Genet. Res. 62, 213–222 (1993).

    Article  Google Scholar 

  46. Wilkinson, G. S. & Reillo, P. R. Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly. Proc. R. Soc. Lond. B. 255, 1–6 (1994).

    Article  Google Scholar 

  47. Rice, W. R. Sex-chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article  PubMed  Google Scholar 

  48. Kirkpatrick, M. & Hall, D. W. Sexual selection and sex linkage. Evolution 58, 683–691 (2004).

    Article  PubMed  Google Scholar 

  49. Albert, A. Y. K. & Otto, S. P. Sexual selection can resolve sex-linked sexual antagonism. Science 310, 119–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Carson, H. L. & Lande, R. Inheritance of a secondary sexual character in Drosophila silvestris. Proc. Natl Acad. Sci. USA 81, 6904–6907 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilburn, A. S. & Day, T. H. The inheritance of female mating-behavior in the seaweed fly, Coelopa frigida. Genet. Res. 64, 19–25 (1994).

    Article  Google Scholar 

  52. Roelofs, W. et al. Sex-pheromone production and perception in European corn-borer moths is determined by both autosomal and sex-linked genes. Proc. Natl Acad. Sci. USA 84, 7585–7589 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reinhold, K. Sex linkage among genes controlling sexually selected traits. Behav. Ecol. Soc. 44, 1–7 (1998).

    Article  Google Scholar 

  54. Wolfenbarger, L. L. & Wilkinson, G. S. Sex-linked expression of a sexually selected trait in the stalk-eyed fly, Cyrtodiopsis dalmanni. Evolution 55, 103–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Ritchie, M. G. The inheritance of female preference functions in a mate recognition system. Proc. R. Soc. Lond. B. 267, 327–332 (2000). The first characterization of female preference functions using nonparametric splines.

    Article  CAS  Google Scholar 

  56. Ritchie, M. G. The shape of female mating preferences. Proc. Natl Acad. Sci. USA 93, 14628–14631 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iyengar, V. K., Reeve, H. K. & Eisner, T. Paternal inheritance of a female moth's mating preference. Nature 419, 830–832 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Houde, A. E. Sex-linked heritability of a sexually selected character in a natural-population of Poecilia reticulata (Pisces, Poeciliidae)(Guppies). Heredity 69, 229–235 (1992).

    Article  Google Scholar 

  59. Parisi, M. et al. Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299, 697–700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742–1745 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, B. H. Statistical Genomics: linkage, mapping, and QTL analysis (CRC, New York, 1997).

    Google Scholar 

  62. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, Sunderland, Massachussets, 1998).

    Google Scholar 

  63. Mackay, T. F. C. Quantitative trait loci in Drosophila. Nature Rev. Genet. 2, 11–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Mackay, T. F. C. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Streelman, J. T., Albertson, R. C. & Kocher, T. D. Genome mapping of the orange blotch colour pattern in cichlid fishes. Mol. Ecol. 12, 2465–2471 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Johns, P. M., Wolfenbarger, L. L. & Wilkinson, G. S. Genetic linkage between a sexually selected trait and X chromosome meiotic drive. Proc. R. Soc. B. 272, 2097–2103 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gleason, J. M., Nuzhdin, S. V. & Ritchie, M. G. Quantitative trait loci affecting a courtship signal in Drosophila melanogaster. Heredity 89, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Huttunen, S., Aspi, J., Hoikkala, A. & Schlotterer, C. QTL analysis of variation in male courtship song characters in Drosophila virilis. Heredity 92, 263–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Gleason, J. M., Jallon, J. M., Rouault, J. D. & Ritchie, M. G. Quantitative trait loci for cuticular hydrocarbons associated with sexual isolation between Drosophila simulans and D. sechellia. Genetics 171, 1789–1798 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feder, M. E. & Walser, J. C. The biological limitations of transcriptomics in elucidating stress and stress responses. J. Evol. Biol. 18, 901–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Gomulkiewicz, R. & Kirkpatrick, M. Quantitative genetics and the evolution of reaction norms. Evolution 46, 390–411 (1992).

    Article  PubMed  Google Scholar 

  72. de Jong, G. Quantitative genetics of reaction norms. J. Evol. Biol. 3, 447–468 (1990).

    Article  Google Scholar 

  73. Stratton, D. A. Reaction norm functions and QTL environment interactions for flowering time in Arabidopsis thaliana. Heredity 81, 144–155 (1998).

    Article  PubMed  Google Scholar 

  74. Moehring, A. J. & Mackay, T. F. C. The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics 167, 1249–1263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasyukova, E. G., Vieira, C. & Mackay, T. F. C. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics 156, 1129–1146 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jallon, J. M. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14, 441–478 (1984).

    Article  CAS  PubMed  Google Scholar 

  77. Blows, M. W. & Allan, R. A. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152, 826–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Chenoweth, S. F. & Blows, M. W. Signal trait sexual dimorphism and mutual sexual selection in Drosophila serrata. Evolution 57, 2326–2334 (2003).

    Article  PubMed  Google Scholar 

  79. Ferveur, J. F. Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav. Genet. 35, 279–295 (2005).

    Article  PubMed  Google Scholar 

  80. Wicker-Thomas, C., Henriet, C. & Dallerac, R. Partial characterization of a fatty acid desaturase gene in Drosophila melanogaster. Insect Biochem. Mol. Biol. 27, 963–972 (1997). Prescient study that cloned the desat1 and desat2 genes in Drosophila , establishing the foundation for the subsequent large body of work on the role of these genes in D. melanogaster mate choice.

    Article  CAS  PubMed  Google Scholar 

  81. Coyne, J. A., Wicker-Thomas, C. & Jallon, J. M. A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genet. Res. 73, 189–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Dallerac, R. et al. A D9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 9449–9454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marcillac, F., Bousquet, F., Alabouvette, J., Savarit, F. & Ferveur, J. F. A mutation with major effects on Drosophila melanogaster sex pheromones. Genetics 171, 1617–1628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marcillac, F., Grosjean, Y. & Ferveur, J. F. A single mutation alters production and discrimination of Drosophila sex pheromones. Proc. R. Soc. B. 272, 303–309 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dworkin, I., Palsson, A. & Gibson, G. Replication of an egfr-wing shape association in a wild-caught cohort of Drosophila melanogaster. Genetics 169, 2115–2125 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lai, C. G., Lyman, R. F., Long, A. D., Langley, C. H. & Mackay, T. F. C. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 266, 1697–1702 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Long, A. D. & Langley, C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9, 720–731 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Barton, N. & Partridge, L. Limits to natural selection. Bioessays 22, 1075–1084 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nature Rev. Genet. 3, 11–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Harbison, S. T., Yamamoto, A. H., Fanara, J. J., Norga, K. K. & Mackay, T. F. C. Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics 166, 1807–1823 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mackay, T. F. C. et al. Genetics and genomics of Drosophila mating behavior. Proc. Natl Acad. Sci. USA 102, 6622–6629 (2005). Combines artificial selection and transcriptional profiling to analyse the genetic basis of mating behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Xu, C. W., Li, Z. K. & Xu, S. Z. Joint mapping of quantitative trait loci for multiple binary characters. Genetics 169, 1045–1059 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Harbison, S. T., Chang, S., Kamdar, K. P. & Mackay, T. F. C. Quantitative genomics of starvation stress resistance in Drosophila. Genome Biol. 6, R36 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Brooks, R. et al. Experimental evidence for multivariate stabilizing sexual selection. Evolution 59, 871–880 (2005).

    Article  PubMed  Google Scholar 

  96. Ryan, M. J. & Rand, A. S. Sexual selection in female perceptual space: how female tungara frogs perceive and respond to complex population variation in acoustic mating signals. Evolution 57, 2608–2618 (2003).

    PubMed  Google Scholar 

  97. Hausmann, F., Arnold, K. E., Marshall, N. J. & Owens, I. P. F. Ultraviolet signals in birds are special. Proc. R. Soc. Lond. B. 270, 61–67 (2003).

    Article  Google Scholar 

  98. Brown, W. M. et al. Dance reveals symmetry especially in young men. Nature 438, 1148–1150 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Brooks, R. Negative genetic correlation between male sexual attractiveness and survival. Nature 406, 67–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Blows, M. W., Chenoweth, S. F. & Hine, E. Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Am. Nat. 163, E329–E340 (2004).

    Article  Google Scholar 

  101. Korol, A. B., Ronin, Y. I. & Kirzhner, V. M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140, 1137–1147 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Korol, A. B., Ronin, Y. I., Itskovich, A. M., Peng, J. H. & Nevo, E. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157, 1789–1803 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mangin, B., Thoquet, P. & Grimsley, N. Pleiotropic QTL analysis. Biometrics 54, 88–99 (1998).

    Article  Google Scholar 

  104. Knott, S. A. & Haley, C. S. Multitrait least squares for quantitative trait loci detection. Genetics 156, 899–911 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Eaves, L. J., Neale, M. C. & Maes, H. Multivariate multipoint linkage analysis of quantitative trait loci. Behav. Genet. 26, 519–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Bauman, L. E. et al. Fishing for pleiotropic QTLs in a polygenic sea. Ann. Hum. Genet. 69, 590–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Yang, Y. H. & Speed, T. Design issues for cDNA microarray experiments. Nature Rev. Genet. 3, 579–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Kerr, M. K. Design considerations for efficient and effective microarray studies. Biometrics 59, 822–828 (2003).

    Article  PubMed  Google Scholar 

  109. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29, 389–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Wayne, M. L., Pan, Y. J., Nuzhdin, S. V. & McIntyre, L. M. Additivity and trans-acting effects on gene expression in male Drosophila simulans. Genetics 168, 1413–1420 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu, Y., Liu, P. Y., Liu, Y. J., Xu, F. H. & Deng, H. W. Quantifying the relationship between gene expressions and trait values in general pedigrees. Genetics 168, 2395–2405 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gibson, G. & Wolfinger, R. D. in Genetic Analysis of Complex Traits Using SAS (ed. Saxton, A. M.) (SAS Institute, Cary, North Carolina, 2004).

    Google Scholar 

  113. Rifkin, S. A., Houle, D., Kim, J. & White, K. P. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438, 220–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Thompson, R., Cullis, B., Smith, A. & Gilmour, A. A sparse implementation of the average information algorithm for factor analytic and reduced rank variance models. Aust. New Zealand J. Stat. 45, 445–459 (2003).

    Article  Google Scholar 

  115. Kirkpatrick, M. & Meyer, K. Direct estimation of genetic principal components: simplified analysis of complex phenotypes. Genetics 168, 2295–2306 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hine, E. & Blows, M. W. Determining the effective dimensionality of the genetic variance-covariance matrix. Genetics 173, 1135–1144 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Walsh, B. Quantitative genetics in the age of genomics. Theor. Popul. Biol. 59, 175–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article  PubMed  Google Scholar 

  119. Brodie, E. D., Moore, A. J. & Janzen, F. J. Visualizing and quantifying natural-selection. Trends Ecol. Evol. 10, 313–318 (1995).

    Article  PubMed  Google Scholar 

  120. Phillips, P. C. & Arnold, S. J. Visualizing multivariate selection. Evolution 43, 1209–1222 (1989).

    Article  PubMed  Google Scholar 

  121. Blows, M. W. & Brooks, R. Measuring nonlinear selection. Am. Nat. 162, 815–820 (2003).

    Article  PubMed  Google Scholar 

  122. Ritchie, M. G., Saarikettu, M. & Hoikkala, A. Variation, but no covariance, in female preference functions and male song in a natural population of Drosophila montana. Anim. Behav. 70, 849–854 (2005).

    Article  Google Scholar 

  123. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, Essex, 1996).

    Google Scholar 

Download references

Acknowledgements

Our ideas on determining the genetic basis of mate choice have been developed through discussion and collaboration with R. Brooks, B. Foley, E. Hine, A. Hoffmann and D. Petfield. We would also like to thank three anonymous reviewers for detailed comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Blows.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

School of Integrative Biology homepage

Glossary

Sexual selection

Occurs when individuals of one sex have differential success in gaining matings with the other sex.

Direct genetic effects

Contributions to the phenotype that are the consequence of an individual's genotype.

Indirect genetic effects

Contributions to phenotype that are the consequence of another individual's genotype.

Lek paradox

The conundrum that female preference should deplete genetic variance in male sexually selected traits, but females continue to choose. Thought to be resolved by the evolution of condition-dependent expression of male traits.

Genetic covariance

A quantitative measure of the extent to which two phenotypes are affected by the same genes.

Pleiotropic loci

Loci that affect more than one phenotypic trait.

Eigenvalue

The eigenvalue is the scale factor with which the eigenvector length changes.

Individual fitness surface

The relationship between a trait (or traits) and fitness for individuals of a population using second-order polynomial regression.

Maternal effects

The effect of the maternal genotype or environment on the phenotype of the offspring.

Contact pheromones

Non-volatile pheromones that are sampled by individuals of the other sex by touching.

Artificial selection

Selection by the researcher of a proportion of individuals, based on phenotype, that will contribute to the next generation. Usually repeated for 10 or more generations.

Reciprocal line crosses

Males and females of both lines are crossed to allow the contribution of the sex chromosomes to a trait to be determined.

Parent–offspring regression

The association of parental phenotypes with offspring phenotypes using linear regression to enable an estimate of heritability.

Inter-pulse interval

The time interval between sound components of a song.

Pulse trains

A string of sound components of a song.

Reaction norm

A function that describes the response of a single genotype to a gradient in the environment.

Recombinant inbred lines

A set of lines that are formed by crossing two inbred strains, followed by 20 or more consecutive generations of brother–sister matings.

Chromosomal introgression

The placement of an entire chromosome of a donor parent in the genetic background of a recipient parent.

Factor-analytic modelling

Multivariate statistical method for fitting underlying latent factors to high-dimensional data.

Mixed model

A linear statistical model that contains both fixed and random sources of variation.

Restricted maximum likelihood

An iterative-based approach used for the estimation of variance components.

Reduced-rank genetic covariance matrix

A covariance matrix that has fewer dimensions than traits.

Half-sib breeding design

A breeding design in which a number of sires are each mated to a number of dams, and the resulting offspring are phenotyped.

Eigenvector

A linear combination of original traits that are measured. A set of eigenvectors are orthogonal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenoweth, S., Blows, M. Dissecting the complex genetic basis of mate choice. Nat Rev Genet 7, 681–692 (2006). https://doi.org/10.1038/nrg1924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing