Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic dissection of essential hypertension

Key Points

  • Arterial pressure is determined by the complex interactions of cardiovascular haemodynamics, kidney function and neural, endocrine and paracrine factors. The function of the kidneys in regulating fluid and electrolyte balance has been shown to be the most important long-term determinant of blood pressure. Essential hypertension represents an imbalance of one or more of these determinants of arterial pressure and is the most common cardiovascular disease, being one of the main risk factors for stroke, heart disease and end-stage kidney disease.

  • Defining the genetic basis of susceptibility to hypertension is challenging because of the complex polygenic nature of arterial blood pressure, which is a quantitative trait that is influenced by multiple variants, gene–gene interactions and environmental factors.

  • Genetic sequence variations within families that are affected by Mendelian forms of hypertension have been identified, but these rare alleles account for less than 1% of human hypertension. However, all of these mutations were found to affect renal tubular electrolyte transport functions, confirming the importance of the kidney in the regulation of blood pressure.

  • Linkage studies using single polymorphic markers that were previously known to participate in a biological pathway of interest (candidate gene markers) have not shown strong linkage with hypertension, and replication between populations has been limited.

  • Genome-scanning linkage studies using microsatellite markers or SNPs have become the method of choice in hypertension research, and have identified many QTLs across the genome. These QTLs have not yet been mapped to the level of individual genetic variants, but attention to precise phenotyping and ecogenetic context is likely to be critically important in this respect.

  • Isolated founder populations show reduced genetic and environmental heterogeneity and provide greater power for QTL mapping because of longer linkage disequilibrium intervals. Studies in such populations have allowed the mapping of QTLs that underlie both arterial pressure per se and intermediate phenotypes that contribute to blood pressure variation.

  • Several candidate-gene association studies for hypertension have been carried out with normotensive (control) and hypertensive (case) subjects. Such approaches are providing fruitful results in other complex diseases. Furthermore, to identify variants across the genome in an unbiased manner, the large numbers of SNPs that have been identified and characterized by efforts such as the HapMap project provide the basis for future genome-wide association studies for hypertension.

  • Rodent models overcome many of the confounding issues that are related to the genetic and environmental heterogeneity that is present in human populations. The rat enables the production of large numbers of informative progeny, invasive measurements and mechanistic studies, which are important not only for phenotyping for the initial ascertainment of QTL, but even more so for narrowing QTL regions.

  • A number of inbred rat strains have been developed that mimic various aspects of human essential hypertension. Comparative mapping to conserved regions in the human genome, and confirmation of linkage across species, seems to be a promising approach for narrowing the regions of interest.

  • Linkage data from rat intercross studies have identified many blood pressure QTLs on a range of chromosomes. These linkage studies confirm the polygenic nature of hypertension and, as found in human linkage studies, dense clusters of blood-pressure-related QTLs are present on a subset of chromosomes.

  • Chromosomal substitution techniques between inbred rats with homogeneous genetic backgrounds provide powerful tools to confirm and narrow down QTL regions in the form of inbred consomic and congenic strains.

  • Microarrays are now being used to identify gene expression differences between normotensive and hypertensive strains. These techniques are beginning to define the molecular, biochemical and physiological pathways that are involved in hypertension and could point to candidate genes. However, to assess causal relationships it is important to carry out serial studies that can properly identify those genes with a relevant temporal response.

  • Genomic regions that are identified as important in regulating blood pressure in rat models of hypertension could provide useful guides in the discovery of functionally related conserved genomic regions in human populations. These model systems will also be essential for determining the functions of newly discovered human candidate genes, through invasive phenotyping and transgenesis.

Abstract

QTL mapping in humans and rats has identified hundreds of blood-pressure-related phenotypes and genomic regions; the next daunting task is gene identification and validation. The development of novel rat model systems that mimic many elements of the human disease, coupled with advances in the genomic and informatic infrastructure for rats, promise to revolutionize the hunt for genes that determine susceptibility to hypertension. Furthermore, methods are evolving that should enable the identification of candidate genes in human populations. Together with the computational reconstruction of regulatory networks, these methods provide opportunities to significantly advance our understanding of the underlying aetiology of hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of arterial blood pressure regulation.
Figure 2: Hypertension QTLs in the human genome.
Figure 3: Derivation of a consomic strain.
Figure 4: Comparative mapping of blood pressure QTLs in human and rats.

Similar content being viewed by others

References

  1. Pickering, G. W. High Blood Pressure 2nd edn (Grune & Stratton, New York, 1968).

    Google Scholar 

  2. Janeway, T. C. The Clinical Study of Blood Pressure (D. Appleton & Co., New York, 1904).

    Google Scholar 

  3. Schroeder, H. A. Hypertensive Diseases — Causes and Control (Lea & Febiger, Philadelphia, 1953).

    Google Scholar 

  4. Kearney, P. M., et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005). Describes how the public-health challenge of hypertension is increasing worldwide, indicating that the prevention, detection, treatment and control of this condition should be a high priority.

    Article  PubMed  Google Scholar 

  5. Hajjar, I., Kotchen, T. A. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA 290, 199–206 (2003).

    Article  PubMed  Google Scholar 

  6. Lalouel, J. M. Large-scale search for genes predisposing to essential hypertension. Am. J. Hypertens. 16, 163–166 (2003). Describes the primary objective of the Family Blood Pressure Program initiated by the US National Heart, Lung and Blood Institute, which is to identify the genetic determinants of essential hypertension in humans.

    Article  PubMed  Google Scholar 

  7. Lee, W. K., Padmanabhan, S. & Dominiczak, A. F. Genetics of hypertension: from experimental models to clinical applications. J. Hum. Hypertens. 14, 631–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lifton, R. P. & Jeunemaitre, X. Finding genes that cause human hypertension. J. Hypertens. 11, 236–239 (1993).

    Article  Google Scholar 

  9. Cowley, A. W. Jr. Long-term control of blood pressure. Physiol. Rev. 72, 231–300 (1992). This review explores the two primary determinants of long-term regulation of arterial pressure — neural control and volume regulation.

    Article  PubMed  Google Scholar 

  10. Hall, J. E. The kidney, hypertension, and obesity. Hypertension 41, 625–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Guyton, A. C., Coleman T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Guyton, A. C. Blood pressure control-special role of the kidneys and body fluids. Science 252, 1813–1816 (1991). The first study to show that the kidney dominates long-term blood pressure control through its role in regulating body-fluid volume.

    Article  CAS  PubMed  Google Scholar 

  13. Touyz, R. M. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44, 248–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Campese, V. M. Salt sensitivity in hypertension. Hypertension 23, 531–550 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, C. A. Hypertension and renal dysfunction: NHANES III. J. Am. Soc. Nephrol. 14, S71–S75 (2003).

    Article  PubMed  Google Scholar 

  16. Kotchen, T. A. et al. Glomerular hyperfiltration in hypertensive African Americans. Hypertension 35, 822–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. El-Gharbawy, A. H., et al. Predictors of target organ damage in hypertensive blacks and whites. Hypertension 38, 761–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Cooper, R. & Rotimi, C. Hypertension in blacks. Am. J. Hypertens. 10, 804–812 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Cooper, R. S. et al. An international comparative study of blood pressure in populations of European vs. African descent. BMC Med. 5, e2 (2005).

    Article  Google Scholar 

  20. Jiang, J. et al. Transfer of a salt-resistant renin allele raises blood pressure in Dahl salt-sensitive rats. Hypertension 29, 619–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Yagil, C. et al. Salt susceptibility maps to chromosomes 1 and 17 with sex specificity in the Sabra rat model of hypertension. Hypertension 31, 119–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Cowley, A. W. Jr et al. Genetically defined risk of salt-sensitivity in an intercross of Brown Norway and Dahl S rats. Physiol. Genomics 2, 107–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Provoost, A. P., Shiozawa, M., Van Dokkum, R. P. & Jacob, H. J. Transfer of the Rf-1 region from FHH onto the ACI background increases susceptibility to renal impairment. Physiol. Genomics 8, 123–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Schulz, A., et al. A major gene locus links early onset albuminuria with renal interstitial fibrosis in the MWF rat with polygenetic albuminuria. J. Am. Soc. Nephrol. 14, 3081–3089 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Hajjar, I. M., Grim, C. E., George, V. & Kotchen, T. A. Impact of diet on blood pressure and age-related changes in blood pressure in the US population: analysis of NHANES III. Arch. Intern. Med. 161, 589–593 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Luft, F. C. et al. Salt sensitivity and resistance of blood pressure. Age and race as factors in physiological responses. Hypertension 17, 1102–1108 (1991).

    Article  Google Scholar 

  27. Lifton, R. P. Molecular genetics of human blood pressure variation. Science 272, 676–680 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Mansfield, T. A. et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31–42 and 17p11–q21. Nature Genet. 16, 202–205 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Lifton, R. P., Gharavi, A. G. & Geller, D. S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001). This review describes the substantial progress that has been made using molecular genetics to identify the fundamental pathways that underlie the pathogenesis of Mendelian forms of hypertension.

    Article  CAS  PubMed  Google Scholar 

  30. Kahle, K. T., Wilson, F. H. & Lifton, R. P. Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch. Trends Endocrinol. Metab. 16, 98–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Wilson, F. H. et al. Human hypertension caused by mutations in WNK kinases. Science 293, 1107–1112 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, F. H. et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc. Natl Acad. Sci. USA 100, 680–684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson, F. H. et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306, 1190–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lifton, R. P. et al. A chimaeric 11β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355, 262–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Lifton, R. P. et al. Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nature Genet. 2, 66–74 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Mune, T., Rogerson, F. M., Nikkila, H., Agarwal, A. K. & White, P. C. Human hypertension caused by mutations in the kidney isozyme of 11 β-hydroxysteroid dehydrogenase. Nature Genet. 10, 394–399 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Geller, D. S. et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289, 119–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Shimkets, R. A. et al. Liddle's syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 79, 407–414 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Hansson, J. H. et al. A de novo missense mutation of the β subunit of the epithelial sodium channel causes hypertension and Liddle's syndrome identifying a proline-rich segment critical for regulation of channel activity. Proc. Natl Acad. Sci. USA 92, 11495–11499 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Disse-Nicodeme, S. et al. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am. J. Hum. Genet. 67, 302–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus, and hypertension. Nature 402, 880–883 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Luft, F. C. Present status of genetic mechanisms in hypertension. Med. Clin. North Am. 88, 1–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Gong, M. & Hubner, N. Molecular genetics of human hypertension. Clin. Sci. 110, 315–326 (2006).

    Article  CAS  Google Scholar 

  44. Kato, N. & Julier, C. Linkage mapping for hypertension susceptibility genes. Curr. Hypertens. Rep. 1, 15–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal, A., Williams, G. H., & Fisher, N. D. Genetics of human hypertension. Trends Endocrinol. Metab. 16, 127–133 (2005). A review of candidate-gene studies for human hypertension. Emphasizes that the use of intermediate phenotypes and dense mapping of candidate genes would provide a better approach for identifying genotype–phenotype correlations for human hypertension.

    Article  CAS  PubMed  Google Scholar 

  46. Knight, J., Monroe, P. B., Pembroke, J. C. & Caulfield, M. J. Human chromosome 17 in essential hypertension. Ann. Hum. Gen. 67, 193–206 (2003).

    Article  CAS  Google Scholar 

  47. Tikhonoff, V. et al. β-Adducin polymorphisms, blood pressure, and sodium excretion in three European populations. Am. J. Hypertens. 16, 840–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lander, E. S. & Schork, N. J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet. 33, 228–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Mayeux, R. Mapping the new frontier: complex genetic disorders. J. Clin. Invest. 115, 1404–1407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005). Describes the HapMap resource, which has characterized more than one million SNPs and can guide the design and analysis of genetic association studies.

  52. Kruglyak, L. Power tools for human genetics. Nature Genet. 37, 1299–1300 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Thorisson, G. A., Smith, A. V., Krishnan, L. & Stein, L. D. The International HapMap Project web site. Genome Res. 15, 1592–1593 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuznetsova T. et al. Sodium excretion as a modulator of genetic associations with cardiovascular phenotypes in the European Project on Genes in Hypertension. J. Hypertens. 24, 235–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Mattson, D. L., Meister, C. J., Marcelle, M. L. Dietary protein source determines the degree of hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension 45, 736–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Newman, D. L. et al. Major loci influencing serum triglyceride levels on 2q14 and 9p21 localized by homozygosity-by-descent mapping in a large Hutterite pedigree. Hum. Mol. Genet. 12, 137–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. O'Brien, E., Kerber, R. A., Jorde, L. B. & Rogers, A. R. Founder effect: assessment of variation in genetic contributions among founders. Hum. Biol. 66, 185–204 (1994).

    CAS  PubMed  Google Scholar 

  58. Jeunemaître, X. et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 71, 169–180 (1992).

    Article  PubMed  Google Scholar 

  59. Hata, A. et al. Angiotensinogen as a risk factor for essential hypertension in Japan. J. Clin. Invest. 3, 1285–1287 (1994).

    Article  Google Scholar 

  60. Wu X. et al. An association study of angiotensinogen polymorphisms with serum level and hypertension in an African-American population. J. Hypertens. 10, 1847–1852 (2003).

    Article  Google Scholar 

  61. Hamet, P. et al. Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension. Am J. Hum. Genet. 76, 815–832 (2005). Describes the assessment of a founder effect, whereby traits that are determined within population subsets are measurably and quantitatively transmitted through a generational lineage, in a French Canadian population with essential hypertension. Numerous QTLs were found, with prominent clusters located on two chromosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bouchard, G., Roy, R., Casgrain, B. & Hubert, M. [Population files and database management: the BALSAC database and the INGRES/INGRID system]. Hist. Mes. 4, 39–57 (1989) (in French).

    Article  CAS  PubMed  Google Scholar 

  63. Kotchen, T. A. et al. Identification of hypertension-related QTLs in African American sib pairs. Hypertension 40, 634–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Langefeld, C. D. et al. Linkage of the metabolic syndrome to 1q23–q31 in Hispanic families: the Insulin Resistance Atherosclerosis Study Family Study. Diabetes 53, 1170–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Hanson, R. L. et al. Autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet. 63, 1130–1138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Binder, A. Identification of genes for a complex trait: examples from hypertension. Curr. Pharm. Biotechnol. 7, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Todd, J. A. Statistical false positive or true disease pathway? Nature Genet. 38, 731–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nature Genet. 35, 131–138 (2003).

    Article  PubMed  Google Scholar 

  71. Kuhlenbaumer, G. et al. Evaluation of single nucleotide polymorphisms in the phosphodiesterase 4D gene (PDE4D) and their association with ischemic stroke in a large German cohort. J. Neurol. Neurosurg. Psychiatry 77, 521–524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marguiles, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 1728–1732 (2005).

    Google Scholar 

  73. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Stoll, M. et al. New target regions for human hypertension via comparative genomics. Genome Res. 10, 473–482 (2000). This study presents a comparative genomic map for candidate hypertension loci in humans on the basis of QTLs that show genetic homology between rats, mice and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dahl, L. K., Heine, M. & Tassinari, L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 5, 480–482 (1962).

    Article  Google Scholar 

  76. Rapp, J. P. Dahl salt-susceptible and salt-resistant rats. Hypertension 4, 753–763 (1982).

    Article  CAS  PubMed  Google Scholar 

  77. Jacob, H. J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Koike, G. et al. Mapping of the rat Sm22 gene to chromosome 8q24: a candidate for high blood pressure and cardiac hypertrophy. Mamm. Genome 6, 216–218 (1995).

    Article  Google Scholar 

  79. Brown, D. M., Provoost, A. P., Daly, M. J., Lander, E. S. & Jacob, H. J. Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nature Genet. 12, 44–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Harris, E. L. et al. Strain-specific deletions in exon 10 of rat K-kininogen and T-kininogen genes allow mapping of both genes to rat chromosome 11. Mamm. Genome 8, 791–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Innes, B. A., McLaughlin, M., Kapuscinski, M. K. & Jacob, H. J. Independent genetic susceptibility of cardiac hypertrophy in inherited hypertension. Hypertension 31, 741–746 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Rapp, J. P. Genetic analysis of inherited hypertension in the rat. Phys. Rev. 80, 135–172 (2000). A review of the genetic dissection of hypertension using selectively bred strains of rats with divergent blood pressures. The theoretical basis and methodologies used are covered, including QTL analyses and the use of congenic strains.

    CAS  Google Scholar 

  83. Gibbs, R. A. et al. Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004). This paper reports the first high-quality draft of the genome of the Brown Norway rat, covering over 90% of the genome sequence.

    Article  CAS  PubMed  Google Scholar 

  84. Michalkiewicz, M et al. Transgenic rescue demonstrates involvement of the Ian5 gene in T cell development in the rat. Physiol. Genomics. 9, 228–232 (2004).

    Article  CAS  Google Scholar 

  85. Cowley, A. W. Jr et al. Brown Norway chromosome 13 confers protection from high salt to consomic Dahl S rat. Hypertension 37, 456–461 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Stoll, M. et al. A genomic-systems biology map for cardiovascular function. Science 294, 1723–1726 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Kato, N. et al. Genome-wide searches for blood pressure quantitative trait loci in the stroke-prone spontaneously hypertensive rat of a Japanese colony. J. Hypertens. 21, 295–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Yagil, C., Hubner, N., Kreutz, R., Ganten, D. & Yagil, Y. Congenic strains confirm the presence of salt-sensitivity QTLs on chromosome 1 in the Sabra rat model of hypertension. Physiol. Genomics 12, 85–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Moreno, C. et al. Genomic map of cardiovascular phenotypes of hypertension in female Dahl S rats. Physiol. Genomics 15, 243–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Glazier, A. M., Nadeau, J. H., Aitman, J. T. Finding genes that underlie complex traits. Science 298, 2345–2349 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Yagil, Y. & Yagil, C. Problems with linkage analysis and QTL detection in hypertension. J. Hypertens. 21, 247–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Rapp, J. P., Wang, S. M. & Dene, H. Effect of genetic background on cosegregation of renin alleles and blood pressure in Dahl rats. Am. J. Hypertens. 3, 391–396 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Cicila, G. T. et al. Cosegregation of the endothelin-3 locus with blood pressure and relative heart weight in inbred Dahl rats. J. Hypertens. 12, 643–651 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Abiola, O. et al. The Complex Trait Consortium. The nature and identification of quantitative trait loci: a community's view. Nature Rev. Genet. 4, 911–916 (2003). A proposal for the standardization of the approaches and statistical analyses that are required for the identification of genetic loci that determine quantitative traits.

    PubMed  Google Scholar 

  95. Pravenec, M. et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nature Genet. 27, 156–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Pfeifer, A., Ikawa, M., Dayn, Y. & Verma, I. M. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl Acad. Sci. USA 99, 2140–2145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Michalkiewicz, M. et al. Efficient transgenic rat production by a lentiviral vector. FASEB J. 20, 407 (2006).

    Google Scholar 

  98. Nadeau, J. H., Singer, J., Matin, A. & Lander, E. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Singer, J. B. et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304, 445–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Cowley, A. W. Jr, Liang, M., Roman, R. J., Greene, A. S. & Jacob, H. J. Consomic rat model systems for physiological genomics. Acta Physiol. Scand. 181, 585–592 (2004). A review of the use of consomic rat strains, a resource that can extend our understanding of genes and their roles in complex function and disease.

    Article  CAS  PubMed  Google Scholar 

  101. Cowley, A. W. Jr, Roman, R. J. & Jacob, H. J. Application of chromosomal substitution techniques in gene function discovery. J. Physiol. 554, 46–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, S. J. et al. Use of a panel of congenic strains to evaluate differentially expressed genes as candidate genes for blood pressure quantitative trait loci. Hypertens. Res. 26, 75–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Steen, R. G. et al. A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat. Genome Res. 9, AP1–AP8 (1999).

    CAS  PubMed  Google Scholar 

  104. Charron, S. et al. Epistasis, not numbers, regulates functions of clustered Dahl rat quantitative trait loci applicable to human hypertension. Hypertension 46, 1300–1308 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Moreno, C. et al. Existence of multiple blood pressure loci on rat chromosome 13 of the Dahl S hypertensive rat. FASEB J. 20, A407 (2006).

    Google Scholar 

  106. Kwitek-Black, A. E., Jacob, H. J. The use of designer rats in the genetic dissection of hypertension. Curr. Hypertens. Rep. 3, 12–18 (2001). Describes the use of consomic and congenic strains, which share phenotypic and genotypic characteristics with humans and are powerful platforms for functional studies.

    Article  CAS  PubMed  Google Scholar 

  107. Hubner, N, Yagil, C & Yagil, Y. Novel integrative approaches to the identification of candidate genes in hypertension. Hypertension 47, 1–5 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics 37, 243–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Liang, M. et al. Insights into Dahl salt-sensitive hypertension revealed by temporal patterns of renal medullary gene expression. Physiol. Genomics 12, 229–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Liang, M., Cowley, A. W. & Greene, A. S. High throughput gene expression profiling: a molecular apporach to integrative physiology. J. Physiol. 554, 22–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G. & Davis, R. W. Significance analysis of time course microarray experiments. Proc. Natl Acad. Sci. USA 102, 12837–12842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kaneko, Y., Herrera, V. L., Didishvili, T. & Ruiz-Opazo, N. Sex-specific effects of dual ET-1/ANG II receptor (Dear) variants in Dahl salt-sensitive/resistant hypertension rat model. Physiol. Genomics 20, 157–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Weiss, L. A., Pan, L., Abney, M. & Ober C. The sex-specific genetic architecture of quantitative traits in humans. Nature Genet. 38, 218–222 (2006). This paper provides evidence that sex-specific heritability is likely to have important implications for mapping complex traits in genome-wide linkage studies.

    Article  CAS  PubMed  Google Scholar 

  114. Ober, C., Pan, L., Phillips, N., Parry, R., & Kurina, L. M. Sex-specific genetic architecture of asthma-associated quantitative trait loci in a founder population. Curr. Allergy Asthma Rep. 6, 241–246 (2006).

    Article  PubMed  Google Scholar 

  115. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Peter, I. et al. Association of estrogen receptor β gene polymorphisms with left ventricular mass and wall thickness in women. Am. J. Hypertens. 18, 1388–1395 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Rinn, J. L. & Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet. 21, 298–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Clough, R. W., Aravich, P. F. & Sladek, C. D. Monosodium glutamate neurotoxicity: a sex-specific impairment of blood pressure but not vasopressin in developing rats. Brain Res. Bull. 17, 51–58 (1986).

    Article  CAS  PubMed  Google Scholar 

  119. Krajnak, K., Kashon, M. L., Rosewell, K. L. & Wise, P. M. Sex differences in the daily rhythm of vasoactive intestinal polypeptide but not arginine vasopressin messenger ribonucleic acid in the suprachiasmatic nuclei. Endocrinology 139, 4189–4196 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Ibrahim, J., McGee, A., Graham, D., McGrath, J. C. & Dominiczak, A. F. Sex-specific differences in cerebral arterial myogenic tone in hypertensive and normotensive rats. Am. J. Physiol. Heart Circ. Physiol. 290, H1081–H1089 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The ideas represented in this overview of the genetics of hypertension have evolved over more than a decade of collaborations with a research team of dedicated and highly interactive geneticists, physiologists and computational biologists working at the Medical College of Wisconsin (MCW). These include H. Jacob, R. Roman, A. Greene, A. Kwitek, M. Olivier, M. Michalkiewicz, M. Liang, J. Lombard, D. Mattson, H. Forster, C. Moreno-Quinn, P. Tonellato, D. Beard and M. Kaldunski. The clinical collaborators responsible for the human hypertension studies in our group are T. Kotchen and U. Broeckel at MCW and P. Hamet at the University of Montreal. We acknowledge the National Heart Lung and Blood Institute and the National Human Genome Institute for support of this research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

DATABASE

OMIM

Apparent mineralocorticoid excess

GLUCOCORTICOID-REMEDIABLE ALDOSTERONISM

LIDDLE SYNDROME

Pseudohypoaldosteronism type II

Type 2 diabetes

FURTHER INFORMATION

MCW Department of Physiology web site

PhysGen physiological genomics database

The Complex Trait Consortium

The International HapMap Project

The Rat Genome Database

NIH Mammalian Gene Collection

Rat Resource & Research Center

Glossary

Compliance

The ratio of the increase in the intraluminal volume relative to an increase in pressure within a blood vessel.

Glomerular filtration

The production of plasma ultrafiltrate by glomeruli

Linkage studies

Studies that are designed to identify the co-segregation of marker alleles and disease within pedigrees.

Renin–angiotensin–aldosterone system

The renin–angiotensin system (RAS) and aldosterone hormone systems have a crucial role in sodium and blood-volume homeostasis, and in the long-term regulation of arterial pressure.

Pleiotropy

Describes situations in which one gene contributes to many phenotypic expressions.

Penetrance

The proportion of individuals with a specific genotype who manifest that genotype at the phenotypic level.

Founder population

The small founding population of a new location that subsequently grows and populates the region; the offspring of these founders can be used in genetic studies to reduce variation due to heterogeneity.

Linkage disequilibrium

The non-random associations of alleles. For example, if the proportion of double homozygotes is greater than predicted from normal Mendelian segregation, then there is linkage disequilibrium between the two alleles. This can arise from epistatic selection, and might indicate a functional interaction between loci that is associated with a phenotype of interest.

Metabolic syndrome

A cluster of conditions that often occur together, including obesity, high blood glucose, high blood pressure and high triglyceride levels, which can lead to cardiovascular disease.

Gene association studies

Population-based genetic studies that examine whether an allele or marker segregates with a phenotype or disease at a significantly higher rate than predicted by chance alone. This is ascertained by genotyping variants in both affected and unaffected individuals.

Genome-wide association studies

The scanning of genomes with genetic markers at regular intervals to identify chromosomal regions with elevated levels of marker similarity in normotensive compared with hypertensive subjects.

Consomic strain

An animal strain that is produced by transferring a single, full-length chromosome from one inbred strain (the donor) into the genetic background of a host strain (the recipient) by repeated backcrossing.

Congenic strain

A congenic strain is produced by transferring a part of a chromosome from one inbred strain into the genetic background of a host strain.

Marker-assisted selection

The use of genetic markers for the selection of a linked characteristic, trait or disease-associated gene.

Dimension reduction

A computational technique that is widely used in informatics science for the mining and visualization of large-scale data sets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowley, A. The genetic dissection of essential hypertension. Nat Rev Genet 7, 829–840 (2006). https://doi.org/10.1038/nrg1967

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing