Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spreading of silent chromatin: inaction at a distance

Key Points

  • A common feature of heterochromatin is that it can 'spread' over long distances and inactivate multiple genes along a chromosome.

  • A survey of spreading in diverse model eukaryotes reveals evidence for three of the classical modes of action-at-a-distance: 'looping' (contact between distant sites), 'sliding' (tracking along a chromosome) and 'oozing' (binding of one silencing protein facilitates adjacent binding of the next, and so on).

  • Long-range oozing was first proposed in the 1930s, and is favoured by textbooks, despite observations of 'skipping' and a general lack of experimental support.

  • Oozing seems to be the mechanism of short-range SIR (silent information regulator)-dependent silencing in budding yeast.

  • Looping can explain cooperative effects in silencing, and is thought to bring distant regions together to help create or maintain regions of high concentration that would favour heterochromatin assembly.

  • Sliding by DNA or RNA polymerases is an attractive mechanism for spreading, because these enzymes move processively along DNA and must profoundly disrupt chromatin to gain access to DNA for copying.

  • We propose that a common mechanism for spreading is 'hopping', whereby a histone-modifying enzyme locally diffuses from a source site to nearby sites of low affinity, residing long enough to modify nearby histone tails.

Abstract

One of the oldest unsolved problems in genetics is the observation that gene silencing can 'spread' along a chromosome. Although spreading has been widely perceived as a process of long-range assembly of heterochromatin proteins, such 'oozing' might not apply in most cases. Rather, long-range silencing seems to be a dynamic process, involving local diffusion of histone-modifying enzymes from source binding sites to low-affinity sites nearby. Discontinuous silencing might reflect looping interactions, whereas the spreading of continuous silencing might be driven by the processive movement of RNA or DNA polymerases. We review the evidence for the spreading of silencing in many contexts and organisms and conclude that multiple mechanisms have evolved that silence genes at a distance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classes of models for action at a distance.
Figure 2: SIR-dependent silencing in budding yeast: oozing and/or looping.
Figure 3: A sliding model for transcription-coupled spreading.
Figure 4: A hopping model for Polycomb-dependent silencing.

Similar content being viewed by others

References

  1. Muller, H. J. Types of visible variations induced by X-rays in Drosophila. J. Genet. 22, 299–334 (1930).

    Google Scholar 

  2. Schultz, J. Variegation in Drosophila and the inert heterochromatic regions. Proc. Natl Acad. Sci. USA 22, 27–33 (1936).

    CAS  PubMed  Google Scholar 

  3. Schultz, J. The function of heterochromatin. Proc. Int. Congr. Genet. 7, 257–262 (1939).

    Google Scholar 

  4. Ptashne, M. Gene regulation by proteins acting nearby and at a distance. Nature 322, 697–701 (1986). This review clearly laid out models for how transcription factors bound to enhancers can interact with proteins at a distant promoter.

    CAS  PubMed  Google Scholar 

  5. Yates, P. A. et al. Silencing of mouse Aprt is a gradual process in differentiated cells. Mol. Cell. Biol. 23, 4461–4470 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Arnaud, P., Goubely, C., Pelissier, T. & Deragon, J. M. SINE retroposons can be used in vivo as nucleation centers for de novo methylation. Mol. Cell. Biol. 20, 3434–3441 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Heard, E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Dev. 15, 482–489 (2005).

    CAS  PubMed  Google Scholar 

  8. Straub, T., Dahlsveen, I. K. & Becker, P. B. Dosage compensation in flies: mechanism, models, mystery. FEBS Lett. 579, 3258–3263 (2005).

    CAS  PubMed  Google Scholar 

  9. Huang, Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res. 30, 1465–1482 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    CAS  PubMed  Google Scholar 

  11. Sekinger, E. A. & Gross, D. S. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 105, 403–414 (2001).

    CAS  PubMed  Google Scholar 

  12. Chen, L. & Widom, J. Mechanism of transcriptional silencing in yeast. Cell 120, 37–48 (2005).

    CAS  PubMed  Google Scholar 

  13. Renauld, H. et al. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7, 1133–1145 (1993). A pioneering study that defined the dependence of SIR complex silencing on distance and Sir3 dosage, and presented evidence for continuous spreading.

    CAS  PubMed  Google Scholar 

  14. Hoppe, G. J. et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22, 4167–4180 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rusche, L. N., Kirchmaier, A. L. & Rine, J. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2207–2222 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liou, G. G., Tanny, J. C., Kruger, R. G., Walz, T. & Moazed, D. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 121, 515–527 (2005).

    CAS  PubMed  Google Scholar 

  17. Boscheron, C. et al. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus. EMBO J. 15, 2184–2195 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lustig, A. J., Liu, C., Zhang, C. & Hanish, J. P. Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2483–2495 (1996).

    CAS  PubMed  Google Scholar 

  19. Georgel, P. T., Palacios DeBeer, M. A., Pietz, G., Fox, C. A. & Hansen, J. C. Sir3-dependent assembly of supramolecular chromatin structures in vitro. Proc. Natl Acad. Sci. USA 98, 8584–8589 (2001).

    CAS  PubMed  Google Scholar 

  20. Lebrun, E. et al. Protosilencers in Saccharomyces cerevisiae subtelomeric regions. Genetics 158, 167–176 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fourel, G., Revardel, E., Koering, C. E. & Gilson, E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 18, 2522–2537 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pryde, F. E. & Louis, E. J. Limitations of silencing at native yeast telomeres. EMBO J. 18, 2538–2550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997). Chromatin immunoprecipitation was used to locate SIR proteins on the chromosome near telomeres and to provide evidence for looping between telomeres and subtelomeres.

    CAS  PubMed  Google Scholar 

  24. de Bruin, D., Zaman, Z., Liberatore, R. A. & Ptashne, M. Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409, 109–113 (2001).

    CAS  PubMed  Google Scholar 

  25. de Bruin, D., Kantrow, S. M., Liberatore, R. A. & Zakian, V. A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol. Cell. Biol. 20, 7991–8000 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lebrun, E., Fourel, G., Defossez, P. A. & Gilson, E. A methyltransferase targeting assay reveals silencer-telomere interactions in budding yeast. Mol. Cell. Biol. 23, 1498–1508 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).

    CAS  PubMed  Google Scholar 

  28. Marcand, S., Buck, S. W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein. Genes Dev. 10, 1297–1309 (1996).

    CAS  PubMed  Google Scholar 

  29. Katan-Khaykovich, Y. & Struhl, K. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J. 24, 2138–2149 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng, T. H. & Gartenberg, M. R. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev. 14, 452–463 (2000). The excision of a ring of silent chromatin demonstrated that the continual presence of silencers or protosilencers is necessary to maintain silent chromatin.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huisinga, K. L., Brower-Toland, B. & Elgin, S. C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115, 110–122 (2006).

    CAS  PubMed  Google Scholar 

  32. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000). The authors showed that mammalian SUV39H1 is a histone H3K9 methyltransferase and mapped the catalytic activity to the SET domain.

    CAS  PubMed  Google Scholar 

  33. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    CAS  Google Scholar 

  34. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  Google Scholar 

  35. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  Google Scholar 

  36. Thon, G. & Verhein-Hansen, J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155, 551–568 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vermaak, D., Henikoff, S. & Malik, H. S. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet. 1, 96–108 (2005).

    CAS  PubMed  Google Scholar 

  38. Smothers, J. F. & Henikoff, S. The hinge of and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol. Cell. Biol. 21, 2555–2569 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Minc, E., Allory, Y., Worman, H. J., Courvalin, J. C. & Buendia, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108, 220–234 (1999).

    CAS  PubMed  Google Scholar 

  40. Hayakawa, T., Haraguchi, T., Masumoto, H. & Hiraoka, Y. Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J. Cell Sci. 116, 3327–3338 (2003).

    CAS  PubMed  Google Scholar 

  41. Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol. 10, 27–30 (2000).

    CAS  PubMed  Google Scholar 

  42. Lechner, M. S., Schultz, D. C., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem. Biophys. Res. Commun. 331, 929–937 (2005).

    CAS  PubMed  Google Scholar 

  43. Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto, K. & Sonoda, M. Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem. Biophys. Res. Commun. 301, 287–292 (2003).

    CAS  PubMed  Google Scholar 

  45. Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    CAS  PubMed  Google Scholar 

  46. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002). This paper demonstrated that spreading in the fission yeast mating type region depends on Swi6, and that the RNAi machinery acts with cenH to establish heterochromatin.

    CAS  PubMed  Google Scholar 

  47. Ayoub, N., Goldshmidt, I., Lyakhovetsky, R. & Cohen, A. A fission yeast repression element cooperates with centromere-like sequences and defines a mat silent domain boundary. Genetics 156, 983–994 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamada, T., Fischle, W., Sugiyama, T., Allis, C. D. & Grewal, S. I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20, 173–185 (2005).

    CAS  PubMed  Google Scholar 

  49. Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    CAS  PubMed  Google Scholar 

  50. Kim, H. S., Choi, E. S., Shin, J. A., Jang, Y. K. & Park, S. D. Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J. Biol. Chem. 279, 42850–42859 (2004). References 49 and 50 demonstrated that there are two redundant pathways for nucleating heterochromatin at the fission yeast mating type locus, one RNAi-dependent and one not.

    CAS  PubMed  Google Scholar 

  51. Shankaranarayana, G. D., Motamedi, M. R., Moazed, D. & Grewal, S. I. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13, 1240–1246 (2003).

    CAS  PubMed  Google Scholar 

  52. Hansen, K. R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol. 25, 590–601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stewart, M. D., Li, J. & Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol. 25, 2525–2538 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheutin, T., Gorski, S. A., May, K. M., Singh, P. B. & Misteli, T. In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin. Mol. Cell. Biol. 24, 3157–3167 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dialynas, G. K. et al. Methylation-independent binding to Histone H3 and cell cycle-dependent incorporation of HP1β into heterochromatin. J. Biol. Chem. 281, 14350–14360 (2006).

    CAS  PubMed  Google Scholar 

  56. Meehan, R. R., Kao, C. F. & Pennings, S. HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J. 22, 3164–3174 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao, T., Heyduk, T., Allis, C. D. & Eissenberg, J. C. Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J. Biol. Chem. 275, 28332–28338 (2000).

    CAS  PubMed  Google Scholar 

  58. Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3, 975–981 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nielsen, A. L. et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell 7, 729–739 (2001).

    CAS  PubMed  Google Scholar 

  60. Nakayama, J., Allshire, R. C., Klar, A. J. & Grewal, S. I. A role for DNA polymerase-α in epigenetic control of transcriptional silencing in fission yeast. EMBO J. 20, 2857–2866 (2001).

    CAS  PubMed Central  Google Scholar 

  61. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    CAS  PubMed  Google Scholar 

  62. Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299, 719–721 (2003). References 61 and 62 demonstrated that mammalian HP1 proteins are surprisingly mobile.

    CAS  PubMed  Google Scholar 

  63. Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G. & Hemmerich, P. High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell 15, 2819–2833 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Krouwels, I. M. et al. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol. 170, 537–549 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vermaak, D., Ahmad, K. & Henikoff, S. Maintenance of chromatin states: an open-and-shut case. Curr. Opin. Cell Biol. 15, 266–274 (2003).

    CAS  PubMed  Google Scholar 

  66. Martienssen, R. A., Zaratiegui, M. & Goto, D. B. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet. 21, 450–456 (2005).

    CAS  PubMed  Google Scholar 

  67. Verdel, A. & Moazed, D. RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett. 579, 5872–5878 (2005).

    CAS  PubMed  Google Scholar 

  68. Horn, P. J., Bastie, J. N. & Peterson, C. L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 19, 1705–1714 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, F. et al. Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification. Curr. Biol. 15, 1448–1457 (2005).

    CAS  PubMed  Google Scholar 

  70. Jia, S., Kobayashi, R. & Grewal, S. I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nature Cell Biol. 7, 1007–1013 (2005).

    CAS  PubMed  Google Scholar 

  71. Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23, 3825–3835 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Thon, G. et al. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171, 1583–1595 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).

    CAS  PubMed  Google Scholar 

  74. Hampsey, M. & Reinberg, D. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113, 429–432 (2003).

    CAS  Google Scholar 

  75. Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006). This study demonstrated that tethering the RITS complex to the nascent transcripts of a euchromatic reporter induces heterochromatin and produces siRNAs that act predominantly in cis , but can initiate heterochromatin in trans when the siRNase Eri1 is deleted.

    CAS  PubMed  Google Scholar 

  76. Frankham, R. Molecular hypotheses for position-effect variegation: anti-sense transcription and promoter occlusion. J. Theor. Biol. 135, 85–107 (1988).

    CAS  PubMed  Google Scholar 

  77. Ahmad, K. & Golic, K. G. Somatic reversion of chromosomal position effects in Drosophila. Genetics 114, 657–670 (1996).

    Google Scholar 

  78. Demerec, M. & Slizynska, H. Mottled white 258–18 of Drosophila melanogaster. Genetics 22, 641–649 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Locke, J., Kotarski, M. A. & Tartof, K. D. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120, 181–198 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wustmann, G., Szidonya, J., Taubert, H. & Reuter, G. The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217, 520–527 (1989).

    CAS  PubMed  Google Scholar 

  81. Seum, C., Delattre, M., Spierer, A. & Spierer, P. Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila. EMBO J. 20, 812–818 (2001). Elegant HP1-tethering experiments demonstrated that ectopic HP1 can nucleate heterochromatin when tethered near dispersed repetitive elements in euchromatin, and form loops to sites of intercalary and pericentric heterochromatin.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, Y., Danzer, J. R., Alvarez, P., Belmont, A. S. & Wallrath, L. L. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130, 1817–1824 (2003).

    CAS  PubMed  Google Scholar 

  83. Danzer, J. R. & Wallrath, L. L. Mechanisms of HP1-mediated gene silencing in Drosophila. Development 131, 3571–3580 (2004).

    CAS  PubMed  Google Scholar 

  84. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nature Biotechnol. 18, 424–428 (2000).

    CAS  Google Scholar 

  85. Sun, F. L. et al. Cis-acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell. Biol. 24, 8210–8220 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster genome. Curr. Biol. 11, 1017–1027 (2001).

    CAS  PubMed  Google Scholar 

  87. Belyaeva, E. S. & Zhimulev, I. F. Cytogenetic and molecular aspects of position effect variegation in Drosophila III. Continuous and discontinuous compaction of chromosomal material as a result of position effect variegation. Chromosoma 100, 453–466 (1991).

    CAS  PubMed  Google Scholar 

  88. Csink, A. K., Bounoutas, A., Griffith, M. L., Sabl, J. F. & Sage, B. T. Differential gene silencing by trans-heterochromatin in Drosophila melanogaster. Genetics 160, 257–69 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Talbert, P. B. & Henikoff, S. A reexamination of spreading of position-effect variegation in the whiteroughest region of Drosophila melanogaster. Genetics 154, 259–272 (2000). This reexamination of silencing at the two genes originally used to infer continuous spreading of heterochromatin found that inactivation frequencies of the genes are not correlated, and provided evidence for discontinuous spreading and rearrangement-specific effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dorer, D. R. & Henikoff, S. Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147, 1181–1190 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Talbert, P. B., LeCiel, C. D. S. & Henikoff, S. Modification of the Drosophila heterochromatic mutation brown Dominant by linkage alterations. Genetics 136, 559–571 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sage, B. T. & Csink, A. K. Heterochromatic self-association, a determinant of nuclear organization, does not require sequence homology in Drosophila. Genetics 165, 1183–1193 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    CAS  PubMed  Google Scholar 

  94. Henikoff, S. Dosage-dependent modification of position-effect variegation in Drosophila. Bioessays 18, 401–409 (1996).

    CAS  PubMed  Google Scholar 

  95. Wakimoto, B. T. & Hearn, M. G. The effects of chromosome rearrangements on the expression of heterochromatic genes in Chromosome 2L of Drosophila melanogaster. Genetics 125, 141–154 (1990). The authors put forward an influential proposal that the association of heterochromatic regions within the nucleus favours heterochromatin formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    CAS  PubMed  Google Scholar 

  97. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    CAS  PubMed  Google Scholar 

  98. Aravin, A. A. et al. Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol. Cell. Biol. 24, 6742–6750 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dreesen, T. D., Henikoff, S. & Loughney, K. A pairing-sensitive element that mediates trans-inactivation is associated with the Drosophila brown gene. Genes Dev. 5, 331–340 (1991).

    CAS  PubMed  Google Scholar 

  100. Martienssen, R. A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet. 35, 213–214 (2003).

    CAS  PubMed  Google Scholar 

  101. Sabl, J. F. & Henikoff, S. Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics 142, 447–458 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Czermin, B. et al. Drosophila enhancer of zeste/ESC complexes have a Histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    CAS  PubMed  Google Scholar 

  103. Bender, W. et al. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221, 23–29 (1983).

    CAS  PubMed  Google Scholar 

  104. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–43 (2004).

    CAS  Google Scholar 

  105. Pirrotta, V. & Rastelli, L. white gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays 16, 549–556 (1994). This survey of chromatin effects proposed an influential model of spreading through association of PcG proteins at PREs and secondary binding sites, and emphasized similarities between PcG silencing and heterochromatin.

    CAS  PubMed  Google Scholar 

  106. Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet. 38, 700–705 (2006). Genomic profiling revealed that H3K27 is widely distributed around PREs, whereas PcG proteins and particularly the histone methyltransferase E(z) are more tightly distributed.

    CAS  PubMed  Google Scholar 

  107. Phair, R. D. et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393–6402 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Luo, K., Vega-Palas, M. A. & Grunstein, M. Rap1–Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 16, 1528–1539 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bose, M. E. et al. The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol. Cell. Biol. 24, 774–86 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).

    CAS  PubMed  Google Scholar 

  111. Carmen, A. A., Milne, L. & Grunstein, M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J. Biol. Chem. 277, 4778–4481 (2002).

    CAS  PubMed  Google Scholar 

  112. Connelly, J. J. et al. Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Mol. Cell. Biol. 26, 3256–3265 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. de Wit, E., Greil, F. & van Steensel, B. Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265–1273 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Greil, F. et al. Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 17, 2825–2838 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Czermin, B. et al. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2, 915–919 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18, 2973–2983 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, W. et al. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133, 229–235 (2006).

    CAS  PubMed  Google Scholar 

  119. Jaquet, Y., Delattre, M., Montoya-Burgos, J., Spierer, A. & Spierer, P. Conserved domains control heterochromatin localization and silencing properties of SU(VAR)3-7. Chromosoma 115, 139–150 (2006).

    CAS  PubMed  Google Scholar 

  120. Cléard, F., Delattre, M. & Spierer, P. SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position effect variegation. EMBO J. 16, 5280–5288 (1997).

    PubMed  PubMed Central  Google Scholar 

  121. Delattre, M., Spierer, A., Jaquet, Y. & Spierer, P. Increased expression of Drosophila Su(var)3-7 triggers Su(var)3-9-dependent heterochromatin formation. J. Cell Sci. 117, 6239–6247 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for stimulating discussions and anonymous reviewers for their helpful comments. Our work has been funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Henikoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

FlyBase

hoppel

FURTHER INFORMATION

Steven Henikoff's homepage

Glossary

Chromodomain

A protein module that binds specific methylated lysines on histone H3.

Chromoshadow

A chromodomain-like protein binding module.

Pericentric heterochromatin

Cytologically condensed chromatin around the centromere.

Dicer

A ribonuclease that 'dices' double-stranded RNA into 21–26 bp fragments.

siRNAs

Small interfering 21–26 bp RNAs that mediate post-transcriptional or transcriptional silencing.

RITS

A ribonucleoprotein complex that initiates RNA-induced transcriptional gene silencing.

Polytene

Composed of many parallel chromatin fibres produced by replication without mitosis or cytokinesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbert, P., Henikoff, S. Spreading of silent chromatin: inaction at a distance. Nat Rev Genet 7, 793–803 (2006). https://doi.org/10.1038/nrg1920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing