Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Archaeal genetics — the third way

Key Points

  • Archaea comprise the third domain of life, alongside bacteria and eukaryotes. The domain Archaea was proposed in 1977 by Carl Woese, as a result of phylogenetic studies that used ribosomal-RNA sequences as a molecular chronometer.

  • Archaea are renowned as extremophiles, but environmental studies indicate that they thrive in all habitats. However, so far no pathogenic archaea have been found.

  • Bacteria and archaea share a prokaryotic morphology and have comparable pathways for central metabolism and energy conversion. On the other hand, information-processing pathways in archaea and eukaryotes use similar enzymes; although archaeal systems are much simpler.

  • Lateral gene transfer between archaea and bacteria is common and might be responsible for some evolutionary innovations.

  • As much as 50% of the genes found in archaeal genomes might encode novel proteins with no obvious counterparts in bacteria or eukaryotes.

  • Archaeal proteins have proved invaluable to biochemists and structural biologists, but genetic studies of archaea are still comparatively rare.

  • Genetic techniques for archaea are more advanced than is commonly believed. A wide range of archaeal species can be transformed using integrative and shuttle vectors, carrying various selectable markers. Methods for mutagenesis and gene knockout are available, as are reporter genes such as β-galactosidase.

Abstract

For decades, archaea were misclassified as bacteria because of their prokaryotic morphology. Molecular phylogeny eventually revealed that archaea, like bacteria and eukaryotes, are a fundamentally distinct domain of life. Genome analyses have confirmed that archaea share many features with eukaryotes, particularly in information processing, and therefore can serve as streamlined models for understanding eukaryotic biology. Biochemists and structural biologists have embraced the study of archaea but geneticists have been more wary, despite the fact that genetic techniques for archaea are quite sophisticated. It is time for geneticists to start asking fundamental questions about our distant relatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene knockout methods that are used in archaeal genetics.
Figure 2: Plasmid vectors.

Similar content being viewed by others

References

  1. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990). Together with reference 1, this is the seminal paper about archaea. Woese and colleagues use phylogenetic analysis that is based on rRNA sequences to propose a three-domain system for living organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van de Vossenberg, J. L., Driessen, A. J. & Konings, W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2, 163–170 (1998).

    CAS  PubMed  Google Scholar 

  4. White, M. F. & Bell, S. D. Holding it together: chromatin in the Archaea. Trends Genet. 18, 621–626 (2002).

    CAS  PubMed  Google Scholar 

  5. DeLong, E. F. & Pace, N. R. Environmental diversity of bacteria and archaea. Syst. Biol. 50, 470–478 (2001).

    CAS  PubMed  Google Scholar 

  6. Grabowski, B. & Kelman, Z. Archaeal DNA replication: eukaryal proteins in a bacterial context. Annu. Rev. Microbiol. 57, 487–516 (2003).

    CAS  PubMed  Google Scholar 

  7. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000). Archaeal proteins are often used for structural studies owing to their high rigidity. This paper is an impressive example, and describes the structure of the Haloarcula marismortui 50 S ribosomal subunit.

    CAS  PubMed  Google Scholar 

  8. Shin, D. S. et al. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J. 22, 4566–4576 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van den Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6, 213–218 (2003).

    CAS  PubMed  Google Scholar 

  10. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    CAS  PubMed  Google Scholar 

  11. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boucher, Y. et al. Lateral gene transfer and the origins of prokaryotic groups. Annu. Rev. Genet. 37, 283–328 (2003). A comprehensive and up-to-date review of the breadth and depth of lateral gene transfer.

    CAS  PubMed  Google Scholar 

  13. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999). This paper, together with reference 11, helps to explain why archaea are a mosaic of bacterial and eukaryotic features, and why genes that encode the latter are not subject to lateral gene transfer.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Graham, D. E., Overbeek, R., Olsen, G. J. & Woese, C. R. An archaeal genomic signature. Proc. Natl Acad. Sci. USA 97, 3304–3308 (2000). By comparing several complete genome sequences, this study seeks to eliminate the background noise that is generated by lateral gene transfer, and derives a set of signature genes that defines the archaea in a holistic manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huet, J., Schnabel, R., Sentenac, A. & Zillig, W. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J. 2, 1291–1294 (1983). In this study, Zillig and colleagues show for the first time that information processing in archaea uses enzymes that are similar to those found in eukaryotes.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bell, S. D. & Jackson, S. P. Mechanism and regulation of transcription in archaea. Curr. Opin. Microbiol. 4, 208–213 (2001).

    CAS  PubMed  Google Scholar 

  17. Thompson, D. K., Palmer, J. R. & Daniels, C. J. Expression and heat-responsive regulation of a TFIIB homologue from the archaeon Haloferax volcanii. Mol. Microbiol. 33, 1081–1092 (1999).

    CAS  PubMed  Google Scholar 

  18. Aravind, L. & Koonin, E. V. DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res. 27, 4658–4670 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bell, S. D., Cairns, S. S., Robson, R. L. & Jackson, S. P. Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol. Cell 4, 971–982 (1999).

    CAS  PubMed  Google Scholar 

  20. Cohen-Kupiec, R., Blank, C. & Leigh, J. A. Transcriptional regulation in Archaea: in vivo demonstration of a repressor binding site in a methanogen. Proc. Natl Acad. Sci. USA 94, 1316–1320 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hofacker, A., Schmitz, K. M., Cichonczyk, A., Sartorius-Neef, S. & Pfeifer, F. GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum. Microbiology 150, 1829–1838 (2004).

    CAS  PubMed  Google Scholar 

  22. Dennis, P. P. Ancient ciphers: translation in Archaea. Cell 89, 1007–1010 (1997).

    CAS  PubMed  Google Scholar 

  23. Benelli, D., Maone, E. & Londei, P. Two different mechanisms for ribosome/mRNA interaction in archaeal translation initiation. Mol. Microbiol. 50, 635–643 (2003).

    CAS  PubMed  Google Scholar 

  24. Sandman, K., Krzycki, J. A., Dobrinski, B., Lurz, R. & Reeve, J. N. HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc. Natl Acad. Sci. USA 87, 5788–5791 (1990). This represents the first demonstration that (eury)archaea package their DNA using histones in a similar way to eukaryotic homologues.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Reeve, J. N. Archaeal chromatin and transcription. Mol. Microbiol. 48, 587–598 (2003).

    CAS  PubMed  Google Scholar 

  26. Bell, S. D., Botting, C. H., Wardleworth, B. N., Jackson, S. P. & White, M. F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296, 148–151 (2002). Histones are not found in Crenarchaeota. This report describes a chromatin protein that is prevalent in Crenarchaeota, and also found in a range of eukaryotic species.

    CAS  PubMed  Google Scholar 

  27. DiRuggiero, J., Brown, J. R., Bogert, A. P. & Robb, F. T. DNA repair systems in Archaea: mementos from the last universal common ancestor? J. Mol. Evol. 49, 474–484 (1999).

    CAS  PubMed  Google Scholar 

  28. Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417 (1997). A perfect illustration of how archaea can provide vital insights into eukaryotic biology. Homology to an archaeal topoisomerase helped to identify Spo11 as the nuclease responsible for initiating meiotic recombination.

    CAS  PubMed  Google Scholar 

  29. Seitz, E. M., Brockman, J. P., Sandler, S. J., Clark, A. J. & Kowalczykowski, S. C. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 12, 1248–1253 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Woods, W. G. & Dyall-Smith, M. L. Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii. Mol. Microbiol. 23, 791–797 (1997).

    CAS  PubMed  Google Scholar 

  31. Komori, K. et al. Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J. Biol. Chem. 275, 33782–33790 (2000).

    CAS  PubMed  Google Scholar 

  32. Roberts, J. A., Bell, S. D. & White, M. F. An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol. Microbiol. 48, 361–371 (2003).

    CAS  PubMed  Google Scholar 

  33. McCready, S. & Marcello, L. Repair of UV damage in Halobacterium salinarum. Biochem. Soc. Trans. 31, 694–698 (2003).

    CAS  PubMed  Google Scholar 

  34. Grogan, D. W. The question of DNA repair in hyperthermophilic archaea. Trends Microbiol. 8, 180–185 (2000).

    CAS  PubMed  Google Scholar 

  35. Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 30, 482–496 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Myllykallio, H. et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212–2215 (2000). This study shows how archaea use 'eukaryotic' enzymes to replicate a circular chromosome in a high-speed 'bacterial' fashion. As demonstrated in references 38 and 39, some archaea use more than one replication origin per chromosome.

    CAS  PubMed  Google Scholar 

  37. Matsunaga, F., Forterre, P., Ishino, Y. & Myllykallio, H. In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc. Natl Acad. Sci. USA 98, 11152–11157 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson, N. P. et al. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116, 25–38 (2004).

    CAS  PubMed  Google Scholar 

  39. Lundgren, M., Andersson, A., Chen, L., Nilsson, P. & Bernander, R. Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc. Natl Acad. Sci. USA 101, 7046–7051 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Galagan, J. E. et al. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12, 532–542 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R. & Metcalf, W. W. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl Acad. Sci. USA 99, 5632–5637 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Verhees, C. H. et al. The unique features of glycolytic pathways in Archaea. Biochem. J. 375, 231–246 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Makarova, K. S. & Koonin, E. V. Filling a gap in the central metabolism of archaea: prediction of a novel aconitase by comparative-genomic analysis. FEMS Microbiol. Lett. 227, 17–23 (2003).

    CAS  PubMed  Google Scholar 

  44. Siebers, B. et al. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J. Bacteriol. 186, 2179–2194 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cline, S. W. & Doolittle, W. F. Efficient transfection of the archaebacterium Halobacterium halobium. J. Bacteriol. 169, 1341–1314 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Charlebois, R. L., Lam, W. L., Cline, S. W. & Doolittle, W. F. Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc. Natl Acad. Sci. USA 84, 8530–8534 (1987). Along with reference 45, this is the first example of high-efficiency transformation of archaea. The authors went on to develop a series of shuttle vectors that was based on the pHV2 plasmid.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tumbula, D. L., Makula, R. A. & Whitman, W. B. Transformation of Methanococcus maripaludis and identification of a Pst I-like restriction system. FEMS Microbiol. Lett. 121, 309–314 (1994).

    CAS  Google Scholar 

  48. Lucas, S. et al. Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 68, 5528–5536 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel, G. B., Nash, J. H. E., Agnew, B. J. & Sprott, G. D. Natural and electroporation-mediated transformation of Methanococcus voltae protoplasts. Appl. Environ. Microbiol. 60, 903–907 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schleper, C., Kubo, K. & Zillig, W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc. Natl Acad. Sci. USA 89, 7645–7649 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cannio, R., Contursi, P., Rossi, M. & Bartolucci, S. An autonomously replicating transforming vector for Sulfolobus solfataricus. J. Bacteriol. 180, 3237–3240 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Metcalf, W. W., Zhang, J. K., Apolinario, E., Sowers, K. R. & Wolfe, R. S. A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc. Natl Acad. Sci. USA 94, 2626–2631 (1997). This paper describes the development of vital tools that make it possible to do genetic analysis in Methanosarcina species. They have been adopted by researchers working on other methanogens.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato, T., Fukui, T., Atomi, H. & Imanaka, T. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185, 210–220 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bertani, G. & Baresi, L. Genetic transformation in the methanogen Methanococcus voltae PS. J. Bacteriol. 169, 2730–2738 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Meile, L., Abendschein, P. & Leisinger, T. Transduction in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J. Bacteriol. 172, 3507–3508 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertani, G. Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181, 2992–3002 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rosenshine, I., Tchelet, R. & Mevarech, M. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245, 1387–1389 (1989).

    CAS  PubMed  Google Scholar 

  58. Mevarech, M. & Werczberger, R. Genetic transfer in Halobacterium volcanii. J. Bacteriol. 162, 461–462 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grogan, D. W. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J. Bacteriol. 178, 3207–3211 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schleper, C., Holz, I., Janekovic, D., Murphy, J. & Zillig, W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J. Bacteriol. 177, 4417–4426 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghané, F. & Grogan, D. W. Chromosomal marker exchange in the thermophilic archaeon Sulfolobus acidocaldarius: physiological and cellular aspects. Microbiology 144, 1649–1657 (1998).

    PubMed  Google Scholar 

  62. Nolling, J. & de Vos, W. M. Identification of the CTAG-recognizing restriction-modification systems MthZI and MthFI from Methanobacterium thermoformicicum and characterization of the plasmid-encoded mthZIM gene. Nucleic Acids Res. 20, 5047–5052 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Blaseio, U. & Pfeifer, F. Transformation of Halobacterium halobium: development of vectors and investigation of gas vesicle synthesis. Proc. Natl Acad. Sci. USA 87, 6772–6776 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Holmes, M. L., Nuttall, S. D. & Dyall-Smith, M. L. Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J. Bacteriol. 173, 3807–3813 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Grogan, D. W. Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J. Bacteriol. 185, 4657–4661 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Holmes, M. L. & Dyall-Smith, M. L. A plasmid vector with a selectable marker for halophilic archaebacteria. J. Bacteriol. 172, 756–761 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Holmes, M. L. & Dyall-Smith, M. L. Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria. J. Bacteriol. 173, 642–648 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Possot, O., Gernhardt, P., Klein, A. & Sibold, L. Analysis of drug resistance in the archaebacterium Methanococcus voltae with respect to potential use in genetic engineering. Appl. Environ. Microbiol. 54, 734–740 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gernhardt, P., Possot, O., Foglino, M., Sibold, L. & Klein, A. Construction of an integration vector for use in the archaebacterium Methanococcus voltae and expression of a eubacterial resistance gene. Mol. Gen. Genet. 221, 273–279 (1990).

    CAS  PubMed  Google Scholar 

  70. Argyle, J. L., Tumbula, D. L. & Leigh, J. A. Neomycin resistance as a selectable marker in Methanococcus maripaludis. Appl. Environ. Microbiol. 62, 4233–4237 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Boccazzi, P., Zhang, J. K. & Metcalf, W. W. Generation of dominant selectable markers for resistance to pseudomonic acid by cloning and mutagenesis of the ileS gene from the archaeon Methanosarcina barkeri Fusaro. J. Bacteriol. 182, 2611–2618 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lam, W. L. & Doolittle, W. F. Shuttle vectors for the archaebacterium Halobacterium volcanii. Proc. Natl Acad. Sci. USA 86, 5478–5482 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wendoloski, D., Ferrer, C. & Dyall-Smith, M. L. A new simvastatin (mevinolin)-resistance marker from Haloarcula hispanica and a new Haloferax volcanii strain cured of plasmid pHV2. Microbiology 147, 959–964 (2001).

    CAS  PubMed  Google Scholar 

  74. Lange, M. & Ahring, B. K. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiol. Rev. 25, 553–571 (2001).

    CAS  PubMed  Google Scholar 

  75. Watrin, L., Martin-Jezequel, V. & Prieur, D. Minimal amino acid requirements of the hyperthermophilic archaeon Pyrococcus abyssi, isolated from deep-sea hydrothermal vents. Appl. Environ. Microbiol. 61, 1138–1140 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Haydock, A. K., Porat, I., Whitman, W. B. & Leigh, J. A. Continuous culture of Methanococcus maripaludis under defined nutrient conditions. FEMS Microbiol. Lett. 238, 85–91 (2004).

    CAS  PubMed  Google Scholar 

  77. Peck, R. F., Dassarma, S. & Krebs, M. P. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol. Microbiol. 35, 667–676 (2000). The first use of a counter-selectable gene knockout system in archaea. This technique has now been widely applied.

    CAS  PubMed  Google Scholar 

  78. Wang, G., Kennedy, S. P., Fasiludeen, S., Rensing, C. & DasSarma, S. Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J. Bacteriol. 186, 3187–3194 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bitan-Banin, G., Ortenberg, R. & Mevarech, M. Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J. Bacteriol. 185, 772–778 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Allers, T., Ngo, H., Mevarech, M. & Lloyd, R. G. Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl. Environ. Microbiol. 70, 943–953 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Watrin, L., Lucas, S., Purcarea, C., Legrain, C. & Prieur, D. Isolation and characterization of pyrimidine auxotrophs, and molecular cloning of the pyrE gene from the hyperthermophilic archaeon Pyrococcus abyssi. Mol. Gen. Genet. 262, 378–381 (1999).

    CAS  PubMed  Google Scholar 

  82. Grogan, D. W. Selectable mutant phenotypes of the extremely thermophilic archaebacterium Sulfolobus acidocaldarius. J. Bacteriol. 173, 7725–7727 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jonuscheit, M., Martusewitsch, E., Stedman, K. M. & Schleper, C. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol. Microbiol. 48, 1241–1252 (2003). This report describes a sophisticated genetic system for S. solfataricus . Genetic studies of hyperthermophiles are relatively rare, but the tools described here should facilitate future investigations.

    CAS  PubMed  Google Scholar 

  84. Martusewitsch, E., Sensen, C. W. & Schleper, C. High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J. Bacteriol. 182, 2574–2581 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sapienza, C., Rose, M. R. & Doolittle, W. F. High-frequency genomic rearrangements involving archaebacterial repeat sequence elements. Nature 299, 182–185 (1982).

    CAS  PubMed  Google Scholar 

  86. Worthington, P., Hoang, V., Perez-Pomares, F. & Blum, P. Targeted disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 185, 482–488 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bowen, T. L. & Whitman, W. B. Incorporation of exogenous purines and pyrimidines by Methanococcus voltae and isolation of analog-resistant mutants. Appl. Environ. Microbiol. 53, 1822–1826 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pritchett, M. A., Zhang, J. K. & Metcalf, W. W. Development of a markerless genetic exchange method for Methanosarcina acetivorans C2A and its use in construction of new genetic tools for methanogenic archaea. Appl. Environ. Microbiol. 70, 1425–1433 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Moore, B. C. & Leigh, J. A. Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J. Bacteriol. (in the press).

  90. Ladapo, J. & Whitman, W. B. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl Acad. Sci. USA 87, 5598–5602 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Watrin, L. & Prieur, D. UV and ethyl methanesulfonate effects in hyperthermophilic archaea and isolation of auxotrophic mutants of Pyrococcus strains. Curr. Microbiol. 33, 377–382 (1996).

    CAS  PubMed  Google Scholar 

  92. Blank, C. E., Kessler, P. S. & Leigh, J. A. Genetics in methanogens: transposon insertion mutagenesis of a Methanococcus maripaludis nifH gene. J. Bacteriol. 177, 5773–5777 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, J. K., Pritchett, M. A., Lampe, D. J., Robertson, H. M. & Metcalf, W. W. In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proc. Natl Acad. Sci. USA 97, 9665–9670 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dyall-Smith, M. L. & Doolittle, W. F. Construction of composite transposons for halophilic Archaea. Can. J. Microbiol. 40, 922–929 (1994).

    CAS  PubMed  Google Scholar 

  95. Jarrell, K. F., Bayley, D. P., Florian, V. & Klein, A. Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae. Mol. Microbiol. 20, 657–666 (1996).

    CAS  PubMed  Google Scholar 

  96. Thomas, N. A., Mueller, S., Klein, A. & Jarrell, K. F. Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol. Microbiol. 46, 879–887 (2002).

    CAS  PubMed  Google Scholar 

  97. Berghöfer, Y. & Klein, A. Insertional mutations in the hydrogenase vhc and frc operons encoding selenium-free hydrogenases in Methanococcus voltae. Appl. Environ. Microbiol. 61, 1770–1775 (1995).

    PubMed  PubMed Central  Google Scholar 

  98. Kim, W. & Whitman, W. B. Isolation of acetate auxotrophs of the methane-producing archaeon Methanococcus maripaludis by random insertional mutagenesis. Genetics 152, 1429–1437 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Stedman, K. M., Schleper, C., Rumpf, E. & Zillig, W. Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus. Construction and testing of viral shuttle vectors. Genetics 152, 1397–1405 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Elferink, M. G., Schleper, C. & Zillig, W. Transformation of the extremely thermoacidophilic archaeon Sulfolobus solfataricus via a self-spreading vector. FEMS Microbiol. Lett. 137, 31–35 (1996).

    CAS  PubMed  Google Scholar 

  101. Krebs, M. P., Hauss, T., Heyn, M. P., RajBhandary, U. L. & Khorana, H. G. Expression of the bacterioopsin gene in Halobacterium halobium using a multicopy plasmid. Proc. Natl Acad. Sci. USA 88, 859–863 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tumbula, D. L., Bowen, T. L. & Whitman, W. B. Characterization of pURB500 from the archaeon Methanococcus maripaludis and construction of a shuttle vector. J. Bacteriol. 179, 2976–2986 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gardner, W. L. & Whitman, W. B. Expression vectors for Methanococcus maripaludis: overexpression of acetohydroxyacid synthase and β-galactosidase. Genetics 152, 1439–1447 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Erauso, G. et al. Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: evidence for rolling-circle replication in a hyperthermophile. J. Bacteriol. 178, 3232–3237 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Aagaard, C. et al. General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid. FEMS Microbiol. Rev. 18, 93–104 (1996).

    CAS  PubMed  Google Scholar 

  106. Aravalli, R. N. & Garrett, R. A. Shuttle vectors for hyperthermophilic archaea. Extremophiles 1, 183–191 (1997).

    CAS  PubMed  Google Scholar 

  107. Beneke, S., Bestgen, H. & Klein, A. Use of the Escherichia coli uidA gene as a reporter in Methanococcus voltae for the analysis of the regulatory function of the intergenic region between the operons encoding selenium-free hydrogenases. Mol. Gen. Genet. 248, 225–228 (1995).

    CAS  PubMed  Google Scholar 

  108. Holmes, M. L. & Dyall-Smith, M. L. Sequence and expression of a halobacterial β-galactosidase gene. Mol. Microbiol. 36, 114–122 (2000).

    CAS  PubMed  Google Scholar 

  109. Patenge, N., Haase, A., Bolhuis, H. & Oesterhelt, D. The gene for a halophilic β-galactosidase (bgaH) of Haloferax alicantei as a reporter gene for promoter analyses in Halobacterium salinarum. Mol. Microbiol. 36, 105–113 (2000).

    CAS  PubMed  Google Scholar 

  110. Gregor, D. & Pfeifer, F. Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. Microbiology 147, 1745–1754 (2001).

    CAS  PubMed  Google Scholar 

  111. Pisani, F. M. et al. Thermostable β-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur. J. Biochem. 187, 321–328 (1990).

    CAS  PubMed  Google Scholar 

  112. Grogan, D. W. Evidence that β-galactosidase of Sulfolobus solfataricus is only one of several activities of a thermostable β-D-glycosidase. Appl. Environ. Microbiol. 57, 1644–1649 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schleper, C., Roder, R., Singer, T. & Zillig, W. An insertion element of the extremely thermophilic archaeon Sulfolobus solfataricus transposes into the endogenous β-galactosidase gene. Mol. Gen. Genet. 243, 91–96 (1994).

    CAS  PubMed  Google Scholar 

  114. Sniezko, I., Dobson-Stone, C. & Klein, A. The treA gene of Bacillus subtilis is a suitable reporter gene for the archaeon Methanococcus voltae. FEMS Microbiol. Lett. 164, 237–242 (1998).

    CAS  PubMed  Google Scholar 

  115. Reuter, C. J. & Maupin-Furlow, J. Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells using short–lived green fluorescent proteins. Appl. Environ. Microbiol. (in the press).

  116. Baliga, N. S. et al. Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res. 14, 1025–1035 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zaigler, A., Schuster, S. C. & Soppa, J. Construction and usage of a onefold coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol. Microbiol. 48, 1089–1105 (2003).

    CAS  PubMed  Google Scholar 

  118. Hjort, K. & Bernander, R. Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Mol. Microbiol. 40, 225–234 (2001).

    CAS  PubMed  Google Scholar 

  119. Sowers, K. R. & Schreier, H. J. Gene transfer systems for the Archaea. Trends Microbiol. 7, 212–219 (1999).

    CAS  PubMed  Google Scholar 

  120. Metcalf, W. W. in Genetic Methods for Diverse Prokaryotes (eds Smith, M. C. M. & Sockett, R. E.) 277–326 (Academic Press, London, 1999).

    Google Scholar 

  121. Kuo, Y.-P., Thompson, D. K., St Jean, A., Charlebois, R. L. & Daniels, C. J. Characterization of two heat shock genes from Haloferax volcanii: a model system for transcription regulation in the Archaea. J. Bacteriol. 179, 6318–6324 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Howland, J. L. The surprising archaea: discovering another domain of life (Oxford Univ. Press Inc., USA, 2000).

    Google Scholar 

  123. Sowers, K. R. & Schreier, H. J. (eds) in Archaea: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  124. Robb, F. T. & Place, A. R. (eds) in Archaea: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  125. DasSarma, S. & Fleischmann, E. M. (eds) in Archaea: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  126. Crick, F. H. C. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).

    CAS  PubMed  Google Scholar 

  127. Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S. & Woese, C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl Acad. Sci. USA 74, 4537–4541 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002). This paper describes N. equitans , an obligate symbiont that grows in co-culture with the crenarchaeon Ignicoccus spp. The N. equitans genome, which is only 491 kb in size, encodes the machinery for information processing but lacks the genes for amino acid, lipid and nucleotide biosynthesis.

    CAS  PubMed  Google Scholar 

  129. Barns, S. M., Delwiche, C. F., Palmer, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Doolittle, W. F. et al. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. Lond. B 358, 39–57; discussion 57–58 (2003).

    CAS  Google Scholar 

  132. Kennedy, S. P., Ng, W. V., Salzberg, S. L., Hood, L. & DasSarma, S. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res. 11, 1641–1650 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461 (2002).

    CAS  PubMed  Google Scholar 

  134. Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Boucher, Y., Douady, C. J., Sharma, A. K., Kamekura, M. & Doolittle, W. F. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J. Bacteriol. 186, 3980–3990 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Deppenmeier, U. The unique biochemistry of methanogenesis. Prog. Nucleic Acid Res. Mol. Biol. 71, 223–283 (2002).

    CAS  PubMed  Google Scholar 

  137. Forterre, P. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet. 18, 236–237 (2002).

    Google Scholar 

  138. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004). The high-throughput techniques used in this study provide a snapshot of microbial biodiversity, without the bias that is inherent in traditional culture methods. In conjunction with other environmental studies, it indicates that archaea are extant in almost any habitat examined.

    CAS  PubMed  Google Scholar 

  139. Eckburg, P. B., Lepp, P. W. & Relman, D. A. Archaea and their potential role in human disease. Infect. Immun. 71, 591–596 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gophna, U., Charlebois, R. L. & Doolittle, W. F. Have archaeal genes contributed to bacterial virulence? Trends Microbiol. 12, 213–219 (2004).

    CAS  PubMed  Google Scholar 

  142. Sprott, G. D., Dicaire, C. J., Gurnani, K., Deschatelets, L. A. & Krishnan, L. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine 22, 2154–2162 (2004).

    CAS  PubMed  Google Scholar 

  143. Hungate, R. E. in Methods in Microbiology (eds Noriss, J. R. & Ribbons, D. W.) 117–132 (Academic Press, New York, 1969).

    Google Scholar 

  144. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260–296 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cline, S. W. & Doolittle, W. F. Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J. Bacteriol. 174, 1076–1080 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Cline, S. W., Lam, W. L., Charlebois, R. L., Schalkwyk, L. C. & Doolittle, W. F. Transformation methods for halophilic archaebacteria. Can. J. Microbiol. 35, 148–152 (1989).

    CAS  PubMed  Google Scholar 

  147. Contursi, P. et al. Development of a genetic system for hyperthermophilic Archaea: expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus. FEMS Microbiol. Lett. 218, 115–120 (2003).

    CAS  PubMed  Google Scholar 

  148. Mankin, A. S., Zyrianova, I. M., Kagramanova, V. K. & Garrett, R. A. Introducing mutations into the single-copy chromosomal 23S rRNA gene of the archaeon Halobacterium halobium by using an rRNA operon-based transformation system. Proc. Natl Acad. Sci. USA 89, 6535–6539 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Nuttall, S. D., Deutschel, S. E., Irving, R. A., Serrano-Gomicia, J. A. & Dyall-Smith, M. L. The ShBle resistance determinant from Streptoalloteichus hindustanus is expressed in Haloferax volcanii and confers resistance to bleomycin. Biochem. J. 346, 251–254 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Cannio, R., Contursi, P., Rossi, M. & Bartolucci, S. Thermoadaptation of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic Archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus. Extremophiles 5, 153–159 (2001).

    CAS  PubMed  Google Scholar 

  151. Jenal, U. et al. Isoleucyl-tRNA synthetase of Methanobacterium thermoautotrophicum Marburg. Cloning of the gene, nucleotide sequence, and localization of a base change conferring resistance to pseudomonic acid. J. Biol. Chem. 266, 10570–10577 (1991).

    CAS  PubMed  Google Scholar 

  152. Sandbeck, K. A. & Leigh, J. A. Recovery of an integration shuttle vector from tandem repeats in Methanococcus maripaludis. Appl. Environ. Microbiol. 57, 2762–2763 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. de Macario, E. C., Guerrini, M., Dugan, C. B. & Macario, A. J. Integration of foreign DNA in an intergenic region of the archaeon Methanosarcina mazei without effect on transcription of adjacent genes. J. Mol. Biol. 262, 12–20 (1996).

    Google Scholar 

  154. Ortenberg, R., Rozenblatt-Rosen, O. & Mevarech, M. The extremely halophilic archaeon Haloferax volcanii has two very different dihydrofolate reductases. Mol. Microbiol. 35, 1493–1505 (2000).

    CAS  PubMed  Google Scholar 

  155. Pfeiffer, M., Bestgen, H., Burger, A. & Klein, A. The vhuU gene encoding a small subunit of a selenium-containing [NiFe]-hydrogenase in Methanococcus voltae appears to be essential for the cell. Arch. Microbiol. 170, 418–426 (1998).

    CAS  PubMed  Google Scholar 

  156. Conover, R. K. & Doolittle, W. F. Characterization of a gene involved in histidine biosynthesis in Halobacterium (Haloferax) volcanii: isolation and rapid mapping by transformation of an auxotroph with cosmid DNA. J. Bacteriol. 172, 3244–3249 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Danner, S. & Soppa, J. Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol. Microbiol. 19, 1265–1276 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Steve Bell, John Leigh, Kevin Sowers, Ed Bolt and numerous other colleagues whose comments have improved the manuscript. We are grateful to John Leigh, Bill Metcalf, Kevin Sowers, Tadayuki Imanaka, David Walsh, Steve Bell, James Chong, Alan Majernik, Friedhelm Pfeiffer, Dieter Oesterhelt and Julie Maupin-Furlow for communicating results before publication, and to Malcolm White, Patrick Forterre, Richard Shand, Joel Querellou, Michel Gouillou, Frank Robb and Cold Spring Harbor Laboratory Press for pictures of archaeal habitats. T.A. is supported by a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Allers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

American Type Culture Collection

Archaeal genomes at National Center for Biotechnology Information

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

Draft archaeal genomes at Oak Ridge National Laboratory

Draft genomes of psychrophilic archaea at University of New South Wales

Draft Haloferax volcanii genome at The Institute for Genomic Research

Genomes OnLine Database (GOLD)

HaloHandbook

Gordon Research Conference (GRC) on Archaea: Ecology, Metabolism & Molecular Biology

Halobacterium salinarum genome at Max Planck Gesellschaft

Halophile genomes at University of Maryland Biotechnology Institute

Japan collection of microorganisms

National Collections of Industrial, Food and Marine Bacteria

Glossary

DOMAIN

The highest level of taxonomic division, comprising Archaea, Bacteria and Eukarya. In declining order, the other levels include: kingdom, phylum, class, order, family, genus and species.

MONOPHYLETIC

A natural taxonomic group consisting of species that share a common ancestor.

CULTIVATION-INDEPENDENT STUDY

Method for determining environmental biodiversity without the need to obtain microbiologically pure cultures. This can be done by using sequences that are retrieved from environmental samples to construct a molecular phylogenetic survey (for example, through environmental genome-shotgun sequencing).

PSYCHROPHILE

An organism that can grow at permanently low temperatures; typically less than 10°C.

EXTREMOPHILE

An organism that requires extreme environments for growth, such as extremes of temperature, salinity or pH, or a combination of these.

HALOPHILE

An organism that requires high concentrations of salt for growth; typically greater than 1M NaCl.

METHANOGEN

An anaerobic organism that generates methane by reduction of carbon dioxide, various one-carbon compounds or acetic acid.

LATERAL GENE TRANSFER

Horizontal transfer of genes between unrelated species, as opposed to vertical inheritance within a species.

ACIDOPHILE

An organism that requires a low pH for growth; typically less than pH 3.

ALKALIPHILE

An organism that requires a high pH for growth; typically greater than pH 10.

ENVIRONMENTAL GENOME-SHOTGUN SEQUENCING

High-throughput sequencing and computational reconstruction of genomic DNA fragments that are extracted from environmental samples to assess microbial diversity in a cultivation-independent manner.

THERMOPHILE

An organism that requires high temperatures for growth; typically greater than 60°C.

HETEROTROPH

An organism that requires complex organic molecules such as amino acids and sugars to build macromolecules and derive energy.

HYPERTHERMOPHILE

An organism that requires extremely high temperatures for growth; typically greater than 80°C.

TRANSFECTION

Infection of a host cell by naked DNA or RNA that is isolated from a virus.

SPHEROPLAST

A cell that is denuded of most of its cell wall or surface layer, usually by chemical or enzymatic treatment. Also known as a protoplast.

TRANSDUCTION

Transfer of host genes between archaeal or bacterial species, using a virus as a vector.

PROTOTROPH

An organism that can grow on minimal media that contain a carbon source and inorganic compounds.

AUXOTROPH

A mutant that requires nutrients that are not needed by wild-type strains for growth on minimal media.

AUTOTROPH

An organism that can synthesize its own macromolecules from simple, inorganic molecules such as carbon dioxide, hydrogen and ammonia.

COUNTER-SELECTABLE MARKER

A marker that if present leads to cell death under selective conditions, usually by conferring sensitivity to an antibiotic or by promoting the synthesis of a toxic product from a non-toxic precursor.

INTEGRATIVE-VECTOR PLASMID

A plasmid vector that is unable to replicate in an archaeal host, which therefore must integrate into the host chromosome by homologous or site-specific recombination.

SHUTTLE-VECTOR PLASMID

A plasmid vector that can replicate in both Escherichia coli and an archaeal host.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allers, T., Mevarech, M. Archaeal genetics — the third way. Nat Rev Genet 6, 58–73 (2005). https://doi.org/10.1038/nrg1504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing