Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

National traditions and the emergence of genetics: the French example

Abstract

After the 'rediscovery' of Mendel in 1900, Mendelian approaches to heredity were controversial. In France, however, resistance to Mendelism was especially strong and genetics only began to be institutionalized there after 1945. Nonetheless, extra-university research programmes in population and physiological genetics, which began after 1930, led to the rapid growth of genetic research after the Second World War, especially in regulatory genetics. We show that this rapid, but delayed, growth of genetic research was based on distinctively French traditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Vilmorin, P. de (ed.) IV Conférence Internationale de Génétique, Paris 1911: Comptes Rendus et Rapports (Librairie de l'Académie de Médecine, Paris, 1913).

    Google Scholar 

  2. Burian, R. M., Gayon, J. & Zallen, D. The singular fate of genetics in the history of French biology, 1900–1940. J. Hist. Biol. 21, 357–402 (1988).

    Article  CAS  Google Scholar 

  3. Gayon, J. & Burian, R. M. France in the era of Mendelism (1900–1930). C.R. Acad. Sci. Paris 323 sér III, 1097–1107 (2000).

    Article  Google Scholar 

  4. Burian, R. M. & Gayon, J. The French school of genetics: from physiological and population genetics to regulatory molecular genetics. Annu. Rev. Genet. 33, 313–349 (1999).

    Article  CAS  Google Scholar 

  5. De Vries, H. Sur la loi de disjonction des hybrides. C.R. Acad. Sci., Paris 130, 845–848 (1900).

    Google Scholar 

  6. De Vries, H. Das Spaltungsgesetz der Bastarde. Ber. Deutsch. Bot. Gesellschaft 18, 83–90 (1900).

    Google Scholar 

  7. De Vries, H. Sur les unités des caractères spécifiques et leur application à l'étude des hybrides. Rev. Gen. Bot. 12, 257–271 (1900).

    Google Scholar 

  8. Adams, M. B. (ed.) The Wellborn Science: Eugenics in Germany, France, Brazil, and Russia (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  9. Schneider, W. H. Quality and Quantity. The Quest for Biological Regeneration in Twentieth-Century France (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  10. Gayon, J. & Veuille, M. in Thinking about Evolution: Historical, Philosophical and Political Perspectives (eds Singh, R., Krimbas, K. B., Paul, D. B. & Beatty, J.) 77–102 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  11. Malécot, G. Théorie Mathématique Mendélienne Généralisée (Guilhot, Paris, 1939).

    Google Scholar 

  12. Ephrussi, B. Chemistry of 'eye color hormones' of Drosophila. Quart. Rev. Biol. 17, 327–338 (1942).

    Article  CAS  Google Scholar 

  13. Beadle, G. W. The genetic control of biochemical reactions. Harvey Lectures 40, 179–194 (1945).

    CAS  Google Scholar 

  14. Horowitz, N. H., Bonner, D. M., Mitchell, H. K., Tatum, E. L. & Beadle, G. W. Genetic control of biochemical reactions in Neurospora. Am. Nat. 79, 304–317 (1945).

    Article  Google Scholar 

  15. Kay, L. E. Selling pure science in wartime: the biochemical genetics of G. W. Beadle. J. Hist. Biol. 22, 73–101 (1989).

    Article  CAS  Google Scholar 

  16. Picard, J.-F. La République de Savants: La Recherche Française et le CNRS Ch. 5 (Flammarion, Paris, 1990).

    Google Scholar 

  17. Burian, R. M. & Gayon, J. Genetics after World War II: the laboratories at Gif. Cahiers pour l'histoire du CNRS 7, 25–48 (1990).

    Google Scholar 

  18. Zallen, D. T. The Rockefeller Foundation and French research. Cahiers pour l'historie du CNRS 5, 35–58 (1990).

    Google Scholar 

  19. L'Héritier, P. Traité de Génétique (Presses Univ. de France, Paris, 1951).

    Google Scholar 

  20. Lamotte, M. Recherches sur la structure génétique des populations naturelles de Cepea nemoralis L. Bull. Biol. de la France et de la Belgique 35 (Suppl.), 1–239 (1951).

  21. Ephrussi, B., Hottinguer, H. & Chimenes, A.-M. Action de l'acriflavine sur les levures. I. La mutation 'petite colonie'. Ann. Inst. Pasteur 76, 351–367 (1949).

    Google Scholar 

  22. Ephrussi, B. Nucleo-Cytoplasmic Relations in Microorganisms. Their Bearing on Cell Heredity and Differentiation (Oxford Univ. Press, Oxford, 1953).

    Google Scholar 

  23. Colloques Internationaux du Centre National de la Recherche Scientifique VIII Unités Biologiques douées de Continuité Génétique (CNRS, Paris, 1949).

  24. Zallen, D. T. & Burian, R. M. On the beginnings of somatic cell hybridization: Boris Ephrussi and chromosome transplantation. Genetics 132, 1–8 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gayon, J. & Burian, R. M. Lamarckism and Darwinism in Pasteurian studies of lysogeny in the 1920s. Presented at University College Symposium: Transformism, Evolutionism and Creationism, 19th–20th Centuries. Jean Gayon's web page (in section 'Membres, Paris-1') [online], (cited 2 Jan 2004), <http://www-ihpst.univ-paris1.fr/r4.htm>; (2003).

    Google Scholar 

  26. Monod, J. L., Cohn, M., Pollock, M. R., Spiegelman, S. & Stanier, R. Y. Terminology of enzyme formation. Nature 172, 1096 (1953).

    PubMed  Google Scholar 

  27. Burian, R. M. & Gayon, J. in L'Institut Pasteur: Contribution à son Histoire (ed. Morange, M.) (Éditions la Découverte, Paris, 1991).

    Google Scholar 

  28. Varley, A. W. Living Molecules or Autocatalytic Enzymes: The Controversy over the Nature of Bacteriophage, 1915–1925. Thesis, Univ. Kansas (1986).

    Google Scholar 

  29. Summers, W. C. Félix d'Hérelle and the Origins of Molecular Biology (Yale Univ. Press, New Haven, 1999).

    Google Scholar 

  30. D'Hérelle, F. W. Sur un microbe invisible antagoniste des bacilles dysentériques. C.R. Acad. Sci., Paris 165, 373–375 (1917).

    Google Scholar 

  31. Bordet, J. & Ciuca, M. Le bacteriophage de d'Hérelle, sa production et son interprétation. C.R. Soc. Biol., Paris 83, 1296–1298 (1920).

    Google Scholar 

  32. Lwoff, A. Lysogeny. Bacter. Rev. 17, 269–337 (1953).

    CAS  Google Scholar 

  33. Brock, T. D. Bacterial Genetics: A Definitive History (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  34. Galperin, C. Le bacteriophage, la lysogénie et son déterminisme génétique. Hist. Phil. Life Sci. 9, 175–224 (1987).

    CAS  Google Scholar 

  35. Lwoff, A. Remarques sur une propriété commune aux gènes, aux principes lysogènes et aux virus des mosaïques. Ann. Inst. Pasteur 56, 165–170 (1936).

    Google Scholar 

  36. Wollman, E. & Wollman, E. Recherches sur le phénomène de Twort-d'Hérelle (bactériophagie ou autolyse hérédo-contagieuse). (Quatrième mémoire). Ann. Inst. Pasteur 56, 137–164 (1936).

    Google Scholar 

  37. Sapp, J. Beyond the Gene: Cytoplasmic Inheritance and the Struggle for Authority in Genetics (Oxford Univ. Press, New York, 1987).

    Google Scholar 

  38. Monod, J. L. Recherches sur la Croissance des Cultures Bactériennes (Hermann, Paris, 1942).

    Google Scholar 

  39. Monod, J. L. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).

    Article  CAS  Google Scholar 

  40. Karström, H. v. Enzymatische adaptation bei mikroorganismen. Ergeb. Enzymforsch. 7, 350–378 (1938).

    Google Scholar 

  41. Monod, J. L. The phenomenon of enzymatic adaptation and its bearing on problems of genetics and cellular differentiation. Growth Symp. 11, 223–289 (1947).

    CAS  Google Scholar 

  42. Jacob, F. & Wollman, E. L. La Sexualité des Bactéries (Masson, Paris, 1959).

    Google Scholar 

  43. Jacob, F. & Wollman, E. L. Sexuality and the Genetics of Bacteria (Academic, New York, 1961).

    Google Scholar 

  44. Judson, H. F. The Eighth Day of Creation: Makers of the Revolution in Biology Ch. 7 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1996).

    Google Scholar 

  45. Jacob, F. & Monod, J. L. On the regulation of gene activity: β-galactosidase formation in E. coli. Cold Spring Harb. Symp. Quant. Biol. 26, 193–211 (1961).

    Article  CAS  Google Scholar 

  46. Monod, J. L. & Jacob, F. General conclusions: teleonomic mechanisms, cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    Article  CAS  Google Scholar 

  47. Jacob, F. & Monod, J. L. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    Article  CAS  Google Scholar 

  48. Cuénot, L. La loi de Mendel et l'hérédité de la pigmentation chez les souris. Arch. Zool. Expér. Gén. 10 sér III, xxvii–xxx (1902).

    Google Scholar 

  49. Twort, F. W. An investigation on the nature of ultramicrosopic viruses. Lancet 2, 1241–1243 (1915).

    Article  Google Scholar 

  50. L'Héritier, P. Une expérience de sélection naturelle. Courbe d'élimination du gène 'bar' dans une population de Drosophiles en équilibre. C.R. Soc. Biol. 117, 1049–1051 (1934).

    Google Scholar 

  51. Ephrussi, B. & Beadle, G. W. La transplantation des ovaires chez la Drosophile. Bull. Biol. France Belg. 69, 492–502 (1935).

    Google Scholar 

  52. Beadle, G. W. & Ephrussi, B. Transplantation in Drosophila. Proc. Natl Acad. Sci. USA 21, 642–646 (1935).

    Article  CAS  Google Scholar 

  53. Pardee, A. B. Experiments on the transfer of information from DNA to enzymes. Exp. Cell Res. 6 (Suppl.), 142–153 (1958).

    Google Scholar 

  54. Pardee, A. B., Jacob, F. & Monod, J. L. The genetic control and cytoplasmic expression of 'inducibility' in the synthesis of β-galactosidase by Escherichia coli. J. Mol. Biol. 1, 165–176 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. FitzPatrick (Virginia Tech.) and two anonymous referees for helpful criticisms of earlier drafts of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Burian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Foundations of classical genetics web site

Institut d'histoire et de philosophie des sciences et des techniques (IHPST)

IHPST section for philosophy of biology and medicine

Jean Gayon's web page (in section 'Membres, Paris-1')

Max Planck Institute for the History of Science

Richard Burian's web page

Glossary

ACRIFLAVIN

An acridine dye that was first intensively studied for its mutagenic properties during the Second World War.

ALLOSTERY

The property of some proteins to change conformation at their active site in response to the binding of another molecule at a second, non-overlapping site.

BALANCED POLYMORPHISM

A genetic polymorphism that is maintained in the absence of selection because the heterozygotes for the alleles in question are more fit than either homozygote.

BIOMETRY

The application of statistics to measurable biological traits; the starting point for the analysis of quantitative traits of organisms and populations.

FRENCH POSITIVISM

A philosophical stance, originating from A. Comte, according to which positive knowledge (derived from direct experience) was required as the basis for scientific knowledge. In some versions, hypothetical (or 'theoretical') entities were sharply rejected.

IMAGINAL DISCS

Patches of epidermal and mesodermal cells in the larvae of metamorphic insects that are fated to become specific organs or tissues of the adult (or imago) during metamorphosis.

INDUCTION

Activation or triggering of a process such as enzyme or virus formation. These two examples of induction were important in studies that led to the analysis of the regulation of gene expression.

KINETOSOME

An organelle from which flagella and cilia are formed, often thought to be self-duplicating and considered to be homologous to the centriole.

LYSENKOISM

An ideology proposed by T. Lysenko (1898–1976) that was formally adopted for biological research and teaching in the Soviet Union in 1948. Lysenko maintained that external treatments could direct evolution by altering the hereditary constitution of organisms.

LYSOGENY

Bordet's term for the ability of some bacterial cells to cause or induce lysis (dissolution of the bacterial cell) in themselves and/or in other bacteria.

OPERON

A genetic unit or cluster that consists of one or more genes that are transcribed as a unit and are expressed in a coordinated manner.

PLASMAGENE

A self-replicating gene in the cytoplasm. In the late 1940s, when it was recognized that protein synthesis takes place mainly in the cytoplasm, it was proposed that nuclear genes produce plasmagenes, which compete for substrate to produce proteins.

PROPHAGE

The structure in lysogenic bacteria that contains the genetic information that is required for the production of bacteriophage and that confers specific hereditary properties on the host (such as immunity from the corresponding bacteriophage).

SHIFTING BALANCE THEORY

S. Wright's theory that evolution is most rapid when small subpopulations remain isolated for long enough to acquire distinctive adaptations, after which increased gene flow restores genetic diversity and maximizes genetic flexibility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayon, J., Burian, R. National traditions and the emergence of genetics: the French example. Nat Rev Genet 5, 150–156 (2004). https://doi.org/10.1038/nrg1274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing