Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The nature of stem cells: state rather than entity

Abstract

Stem cells are endowed with self-renewal and multipotential differentiation capacities. Contrary to the expectation that stem cells would selectively express specific genes, these cells have a highly promiscuous gene-expression pattern. Here, I suggest that the transient stem cell state, termed the 'stem state', may be assumed by any cell and that the search for specific genes expressed by all stem cells, which would characterize the stem cell as a cell type, might be futile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene-expression patterns as a function of transition from a stem-cell to a maturing-cell state.
Figure 2: Options for transition between renewal and differentiation.
Figure 3: The stem state.
Figure 4: Molecular signature of the stem state.

Similar content being viewed by others

References

  1. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Phillips, R. L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Fortunel, N. O. et al. Comment on '“Stemness”: transcriptional profiling of embryonic and adult stem cells”' and '“A stem cell molecular signature”'. Science 302, 393 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Evsikov, A. V. & Solter, D. Comment on '“Stemness”: transcriptional profiling of embryonic and adult stem cells' and 'a stem cell molecular signature'. Science 302, 393 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Matsuzaki, Y., Kinjo, K., Mulligan, R. C. & Okano, H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 20, 87–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Mazurier, F., Doedens, M., Gan, O. I. & Dick, J. E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD–SCID mice reveals a new class of human stem cells. Nature Med. 9, 959–963 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Zipori, D. The renewal and differentiation of hemopoietic stem cells. FASEB J. 6, 2691–2697 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Back, J., Dierich, A., Bronn, C., Kastner, P. & Chan, S. PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood 103, 3615–3623 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Muller-Sieburg, C. E., Cho, R. H., Karlsson, L., Huang, J. F. & Sieburg, H. B. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103, 4111–4118 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Younes, S. A. et al. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J. Exp. Med. 198, 1909–1922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trentin, A., Glavieux-Pardanaud, C., Le Douarin, N. M. & Dupin, E. Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proc. Natl Acad. Sci. USA 101, 4495–4500 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zipori, D. Regulation of hemopoiesis by cytokines that restrict options for growth and differentiation. Cancer Cells 2, 205–211 (1990).

    CAS  PubMed  Google Scholar 

  15. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goolsby, J. et al. Hematopoietic progenitors express neural genes. Proc. Natl Acad. Sci. USA 100, 14926–14931 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woodbury, D., Reynolds, K. & Black, I. B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res. 69, 908–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Barda-Saad, M. et al. The mesenchyme expresses T cell receptor mRNAs: relevance to cell growth control. Oncogene 21, 2029–2036 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Prudhomme, W., Daley, G. Q., Zandstra, P. & Lauffenburger, D. A. Multivariate proteomic analysis of murine embryonic stem cell self–renewal versus differentiation signaling. Proc. Natl Acad. Sci. USA 101, 2900–2905 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl Acad. Sci. USA 100, 7632–7637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, H. Y. et al. Instructive role of Wnt/β-catenin in sensory fate specification in neural crest stem cells. Science 303, 1020–1023 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Langer, J. C., Henckaerts, E., Orenstein, J. & Snoeck, H. W. Quantitative trait analysis reveals transforming growth factor-β2 as a positive regulator of early hematopoietic progenitor and stem cell function. J. Exp. Med. 199, 5–14 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerber, H. P. et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl Acad. Sci. USA 100, 3422–3427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Haan, G. et al. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1. Dev. Cell 4, 241–251 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Ueno, H. et al. A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nature Immunol. 4, 457–463 (2003).

    Article  CAS  Google Scholar 

  33. Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Harada, H. et al. FGF10 maintains stem cell compartment in developing mouse incisors. Development 129, 1533–1541 (2002).

    CAS  PubMed  Google Scholar 

  35. Kunisada, T. et al. Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 125, 2915–2923 (1998).

    CAS  PubMed  Google Scholar 

  36. Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–8560 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science 294, 2546–2549 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Brun, A. C. et al. Hoxb4 deficient mice have normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 103, 4126–4133 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Larsson, J. et al. TGF-β signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood 102, 3129–3135 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289–3296 (2000).

    CAS  PubMed  Google Scholar 

  42. van de Wiel-van Kemenade, E. et al. Adhesion of T and B lymphocytes to extracellular matrix and endothelial cells can be regulated through the β subunit of VLA. J. Cell Biol. 117, 461–470 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Song, X. et al. Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131, 1353–1364 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Weigel, D. & Jurgens, G. Stem cells that make stems. Nature 415, 751–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka, E. M. Regeneration: if they can do it, why can't we? Cell 113, 559–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Prindull, G. & Zipori, D. Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 103, 2892–2899 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Y., Glesne, D. & Huberman, E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Natl Acad. Sci. USA 100, 2426–2431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grafi, G. How cells dedifferentiate: a lesson from plants. Dev. Biol. 268, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by the Gabrielle Rich Center for Transplantation Biology and by research grants from the Minerva Foundation, Michael Krasny, Daniel and Rhonda Shapiro, Jerrald and Helene Wulff and the Isabelle and Leonard Goldenson Association. The author wishes to thank Ayelet Laron and Vered Morad for their valuable comments on the manuscript. D.Z. is an incumbent of the Joe and Celia Weinstein Professorial Chair at the Weizmann Institute of Science.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

Leukaemia inhibitory factor

STAT3

FURTHER INFORMATION

Zipori's web page

Glossary

CYTOKINES

A group of proteins that form a dynamic network of intercellular messenger molecules that regulate various aspects of physiology, including the immune response to infection.

ENDOTHELIAL CELLS

Flattened cells that grow in a single layer and line blood vessels.

G0 PHASE

The resting phase of the cell cycle.

HAEMATOPOIETIC

Pertaining to the formation of blood and blood cells.

MACROPHAGES

Phagocytic cells that respond to non-self material (for example, bacteria, protozoa or tumour cells) to release substances that stimulate other cells of the immune system. They are also involved in antigen presentation and are derived from monocytes, which circulate in the blood.

MESENCHYME

Motile, loosely organized unpolarized cells that do not form firm cell–cell contacts and have a proteoglycan-rich extracellular matrix.

MONOCYTES

Large white blood cells involved in the first line of immune defence and in the inflammatory process.

STROMATA

Connective tissue that is made up of cells, such as fibroblasts, and matrix, such as collagen, and forms the supportive organ microenvironment

T CELLS

Lymphoid-derived white blood cells that are responsible for cell-mediated immunity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zipori, D. The nature of stem cells: state rather than entity. Nat Rev Genet 5, 873–878 (2004). https://doi.org/10.1038/nrg1475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing