Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

An evolutionary scenario for the origin of flowers

Abstract

The Mostly Male theory is the first to use evidence from gene phylogenies, genetics, modern plant morphology and fossils to explain the evolutionary origin of flowers. It proposes that flower organization derives more from the male structures of ancestral gymnosperms than from female structures. The theory arose from a hypothesis-based study. Such studies are the most likely to generate testable evolutionary scenarios, which should be the ultimate goal of evo-devo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LFY gene tree superimposed on the tree representing the phylogeny of organisms.
Figure 2: The continuum of developmental genetic mechanisms that could have generated the bisexual flower from ancestral unisexual reproductive structures.
Figure 3: Illustration of the evolutionary stages of the Mostly Male theory.
Figure 4: Ovules and cupules.
Figure 5: Relationships of the B and Bsister MADS-box genes.

Similar content being viewed by others

References

  1. Darwin, F. & Seward, A. C. (eds) More Letters of Charles Darwin: A Record of his Work in a Series of Hitherto Unpublished Letters Vol. 2 20–21 (John Murray, London, 1903).

    Google Scholar 

  2. Stebbins, G. L. Flowering Plants: Evolution Above the Species Level (Harvard Univ. Press, Cambridge, Massachusetts, 1974).

    Book  Google Scholar 

  3. Doyle, J. A. Origin of angiosperms. Annu. Rev. Ecol. Syst. 9, 365–392 (1978).

    Article  Google Scholar 

  4. Taylor, D. W. & Hickey, L. J. (eds) Flowering Plant Origin, Evolution and Phylogeny (Chapman and Hall, New York, 1996).

    Book  Google Scholar 

  5. Crane, P. R. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard. 72, 716–793 (1985).

    Article  Google Scholar 

  6. Friis, E. M. et al. The Origin of Angiosperms and their Biological Consequences (Cambridge Univ. Press, Cambridge, UK, 1987).

    Google Scholar 

  7. Frohlich, M. W. & Parker, D. S. The Mostly Male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25, 155–170 (2000).

    Article  Google Scholar 

  8. Frohlich, M. W. in Beyond Heterochrony: The Evolution of Development (ed. Zelditch, M. L.) 59–106 (John Wiley, New York, 2001).

    Google Scholar 

  9. Frohlich, M. W. in Developmental Genetics and Plant Evolution: Systematics Association Special Volume Series 65 (eds Cronk, Q. C. B. et al.) 85–108 (Taylor and Francis, London, 2002).

    Book  Google Scholar 

  10. Doyle, J. A. Seed plant phylogeny and the relationships of Gnetales. Int. J. Plant Sci. 157, 3–39 (1996).

    Article  Google Scholar 

  11. Frohlich M. W. & Meyerowitz, E. M. The search for flower homeotic gene homologs in basal angiosperms and gnetales: a potential new source of data on the evolutionary origin of flowers. Int. J. Plant Sci. 158, 131–142 (1997).

    Article  Google Scholar 

  12. Baum, D. A. The evolution of plant development. Curr. Opin. Plant Biol. 1, 79–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Lohmann, J. U. & Weigel, D. Building beauty: the genetic control of floral patterning. Dev. Cell 2, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Donoghue, M. J. & Doyle, J. A. Seed plant phylogeny: demise of the anthophyte hypothesis? Curr. Biol. 10, 106–109 (2000).

    Article  Google Scholar 

  15. Frohlich, M. W. & Estabrook, G. F. Wilkinson support calculated with exact probabilities: an example using Floricaula/LEAFY amino acid sequences that compares three hypotheses involving gene gain/loss in seed plants. Mol. Biol. Evol. 17, 1914–1925 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Mouradov, A. et al. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc. Natl Acad. Sci. USA 95, 6537–6542 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mellerowicz, E. J. et al. PRFLL a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta 206, 619–629 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Colombo, L. et al. The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859–1868 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Decraene, L. P. R. & Smets, E. F. Notes on the evolution of androecial organisation in the Magnoliophytina (angiosperms). Bot. Acta 111, 77–86 (1998).

    Article  Google Scholar 

  20. Hufford, L. The morphology and evolution of male reproductive structures of Gnetales Int. J. Plant Sci. 157, 95–112 (1996).

    Article  Google Scholar 

  21. Endress, P. K. Structure and function of female and bisexual organ complexes in Gnetales. Int. J. Plant Sci. 157, 113–125 (1996).

    Article  Google Scholar 

  22. Yao, X. et al. The Corystosperm pollen organ Pteruchus from the Triassic of Antarctica. Amer. J. Bot. 82, 535–546 (1995).

    Article  Google Scholar 

  23. Klavins, S. D. et al. Anatomy of Umkomasia (Corystospermales) from the Triassic of Antarctica. Amer. J. Bot. 89, 664–676 (2002).

    Article  Google Scholar 

  24. Shindo, S. et al. Characterization of a FLORICAULA/LEAFY homologue of Gnetum parvifolium and its implications for the evolution of reproductive organs in seed plants. Int. J. Plant Sci. 162, 1199–1209 (2001).

    Article  CAS  Google Scholar 

  25. Long, J. A. et al. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, R. C. & Mogensen, H. L. Late ovule and early embryo development in Quercus gambelii. Amer. J. Bot. 59, 311–316 (1972).

    Article  Google Scholar 

  27. Bowman, J. L. et al. Establishment of polarity in angiosperm lateral organs. Trends Genet. 18, 134–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Svoma, E. Seed development and function in Artabotrys hexapetalus (Annonaceae). Plant Syst. Evol. 207, 205–223 (1997).

    Article  Google Scholar 

  29. Taylor, T. N. et al. Permineralized seed fern cupules from the Triassic of Antarctica — implications for cupule and carpel evolution. Amer. J. Bot. 81, 666–677 (1994).

    Article  Google Scholar 

  30. Griffith, M. E. et al. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development 126, 5635–5644 (1999).

    CAS  PubMed  Google Scholar 

  31. Nelson, J. M. et al. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis. Development 129, 4581–4589 (2002).

    CAS  PubMed  Google Scholar 

  32. Groß-Hardt, R. et al. WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev. 16, 1129–1138 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Winter, K. U. et al. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol. Biol. Evol. 19, 587–596 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Becker, A. et al. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol. Genet. Genomics 266, 942–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Nesi, N. et al. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14, 2463–2479 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bowe, L. M. et al. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc. Natl Acad. Sci. USA 97, 4092–4097 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaw, S. M. et al. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl Acad. Sci. USA 97, 4086–4091 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qiu, Y. -L. et al. Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int. J. Plant Sci. 161, 3–27 (2000).

    Article  Google Scholar 

  39. Mathews, S. & Donoghue, M. J. Basal angiosperm phylogeny inferred from duplicate phytochromes A and C. Int. J. Plant Sci. 161, 41–55 (2000).

    Article  Google Scholar 

  40. Soltis, D. E. et al. Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 7, 22–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Lanfranchi, G. et al. Identification of 4370 expressed sequence tags from a 3′-end-specific cDNA library of human skeletal muscle by DNA sequencing and filter hybridization. Genome Res. 6, 35–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Albert, V. A. et al. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci. 7, 297–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Theissen, G. et al. in Developmental Genetics and Plant Evolution: Systematics Association Special Volume Series 65 (eds Cronk, Q. C. B. et al.) 173–206 (Taylor and Francis, London, 2002).

    Google Scholar 

  44. Lamark, J. B. Zoological Philosophy (1809) 122 (Univ. Chicago Press, Chicago, 1984) (Translated by H. Elliot).

    Google Scholar 

  45. Mayr, E. The Growth of Biological Thought (Belknap, Cambridge, Massachusetts, 1982).

    Google Scholar 

  46. Frohlich, M. W. MADS about Gnetales. Proc. Natl Acad. Sci. USA 96, 8811–8813 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gould, S. J. Sociobiology: the art of storytelling. New Sci. 80, 530–533 (1978).

    Google Scholar 

  48. Gould, S. J. & Lewontin, R. C. The Spandrels of San-Marco and the Panglossian paradigm — a critique of the adaptationist program. Proc. Royal Soc. London B 205, 581–598 (1979).

    Article  CAS  Google Scholar 

  49. Iltis, H. H. From teosinte to maize: the catastrophic sexual transmutation. Science 222, 886–894 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Iltis, H. H. Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ. Bot. 54, 7–42 (2000).

    Article  Google Scholar 

  51. Lauter, N. & Doebley, J. Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 160, 333–342 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gibson, G. Developmental evolution: going beyond the 'just so'. Curr. Biol. 9, 942–945 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank E. Meyerowitz, in whose laboratory this work began, J. Trager of Huntington Gardens, San Marino, California, and L. Song of the University of California, Fullerton, for Welwitschia materials, and two anonymous reviewers. This work is supported by a National Science Foundation grant.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

MaizeGDB

rolled leaf 1

TAIR

INO

LFY

STM

FURTHER INFORMATION

Floral Genome Project

Glossary

CARPEL

A leaf homologue that encloses the ovules and seeds in angiosperms and develops into the fruit.

CHAROPHYTES

The group of green algae that are most closely related to land plants.

CLADISTICS

The approach for analysing organismal or gene diversity that uses explicit characters and character states, which are mapped onto branching diagrams that explicitly mirror possible phylogenetic relationships.

CLADOGRAM

A branching diagram that represents organismal or gene phylogeny.

EVOLUTIONARY SYNTHESIS

The movement to deepen the understanding of Darwinian evolution by incorporating knowledge from different fields, including genetics, population genetics, ecology and so on.

GYMNOSPERMS

Plants that make ovules and seeds but lack flowers. There are four extant groups: conifers, cycads, Ginkgo and Gnetales.

HETEROTOPY

An evolutionary process in which a particular structure of an organism forms in new location.

LONG BRANCH

An internode in a phylogenetic tree in which large amounts of character-state change have occured.

MAD-BOX GENES

Eukaryotic genes that have the MADS-box DNA-binding domain.

MONOPHYLETIC

A group of organisms or genes descended from a common ancestor that is a member of the group, which includes all descendents of that common ancestor.

ORTHOLOGUES

Two or more genes (or gene families) that became distinct lineages as the result of a speciation event.

OUTGROUP

A group of organisms or genes that is outside the monophyletic group under consideration.

PARALOGUES

Two or more genes (or gene families) that became distinct lineages owing to a gene-duplication event in an organism.

PERMINERALIZED

A plant fossil resulting from mineral deposition in the cells and tissues of the specimen, which often preserves the cell walls and tissue structure.

PHYLLARIES

Modified leaves that surround the dense flower clusters (heads) of plants in the sunflower family.

SEPAL

The outer-most group of organs in a flower.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frohlich, M. An evolutionary scenario for the origin of flowers. Nat Rev Genet 4, 559–566 (2003). https://doi.org/10.1038/nrg1114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing