Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The genetic consequences of our sweet tooth

Abstract

First reported in 1956, hereditary fructose intolerance (HFI) illustrates vividly how interactions between genes and nutrients can influence taste preferences; the disease also reflects the ascendancy of sucrose and fructose as energy sources and as the world's principal sweeteners. However, HFI is not the only genetic ill to have emerged from our obsession with sugar: the slave trade, which had such a key part in the development of the sugar industry, also included major genetic consequences in its haunting legacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic defect in hereditary fructose intolerance.
Figure 2: World production of raw sugar.
Figure 3: Sources of sugar.

References

  1. Cross, N. C. P., Tolan, D. R. & Cox, T. M. Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation. Cell 53, 881–885 (1988).

    Article  CAS  Google Scholar 

  2. Steinmann, B., Gitzelmann, R. & Van den Berghe, G. in The Metabolic and Molecular Bases of Inherited Disease 8th edn (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 1489–1520 (McGraw–Hill, New York, 2001).

    Google Scholar 

  3. Chambers, R. A. & Pratt, R. T. C. Idiosyncrasy to fructose. Lancet 2, 340 (1956).

    Article  Google Scholar 

  4. Ali, M., Rellos, P. & Cox, T. M. Hereditary fructose intolerance. J. Med. Genet. 35, 353–365 (1998).

    Article  CAS  Google Scholar 

  5. Brooks, C. C. & Tolan, D. R. Association of the widespread A149P hereditary fructose intolerance mutation with newly-identified sequence polymorphisms in the aldolase B gene. Am. J. Hum. Genet. 52, 835–840 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. James, C. L., Rellos, P., Ali, M., Heeley, A. F. & Cox, T. M. Neonatal screening for hereditary fructose intolerance: frequency of the most common mutant aldolase B allele (A149P) in the British population. J. Med. Genet. 33, 837–841 (1996).

    Article  CAS  Google Scholar 

  7. Cross, N. C. P. et al. Molecular analysis of aldolase B genes in hereditary fructose intolerance. Lancet 335, 306–309 (1990).

    Article  CAS  Google Scholar 

  8. Baerlocher, K., Gitzelmann, R., Steinmann, B. & Gitzelmann-Cumarasamy, N. Hereditary fructose intolerance in early childhood: a major diagnostic challenge. Helv. Paediatr. Acta 33, 465–487 (1978).

    CAS  PubMed  Google Scholar 

  9. Odièvre, M., Gentil, C., Gantier, M. & Alagille, D. Hereditary fructose intolerance in childhood. Diagnosis, management and course in 55 patients. Am. J. Dis. Child. 132, 605–608 (1978).

    Article  Google Scholar 

  10. Odièvre, M., Gautier, M. & Rieu, D. Intolerance herèditaire au fructose du nourrisson. Evolution des lesions histologiques hépatiques sous traitement diétique prolonge (étude de huit observations). Arch. F. Pediatr. 26, 433–443 (1969).

    Google Scholar 

  11. Ali, M., Rosien, U. & Cox, T. M. Diagnosis of fatal fructose intolerance from archival tissue. Q. J. Med. 86, 25–30 (1993).

    CAS  PubMed  Google Scholar 

  12. Mock, D. M., Perman, J. A., Thaler, M. M. & Morris, R. C. Chronic fructose intoxication after infancy in children with hereditary fructose intolerance. A cause of growth retardation. N. Engl. J. Med. 309, 764–770 (1983).

    Article  CAS  Google Scholar 

  13. Cox, T. M. Aldolase B and fructose intolerance. FASEB J. 8, 62–71 (1994).

    Article  CAS  Google Scholar 

  14. Cox, T. M. Iatrogenic deaths in hereditary fructose intolerance. Arch. Dis. Child. 69, 413–415 (1993).

    Article  CAS  Google Scholar 

  15. Sygusch, J., Beaudry, D. & Allaire, M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7 Å resolution. Proc. Natl Acad. Sci. USA 84, 7846–7850 (1987).

    Article  CAS  Google Scholar 

  16. Rellos, P., Sygusch, J. & Cox, T. M. Expression, purification and characterization of natural mutants of human aldolase B: role of quaternary structure in catalysis. J. Biol. Chem. 275, 1145–1151 (2000).

    Article  CAS  Google Scholar 

  17. Rellos, P., Ali, M., Vidailhet, M., Sygusch, J. & Cox, T. M. Alteration of substrate specificity by a naturally-occurring aldolase B mutation (Ala337 → Val) in fructose intolerance. Biochem. J. 340, 321–327 (1999).

    Article  CAS  Google Scholar 

  18. Deerr, N. History of Sugar Vols 1 and 2 (Chapman & Hall, London, 1949–1950).

    Google Scholar 

  19. Hanover, L. M. & White, J. S. Manufacturing, composition and applications of fructose. Am. J. Clin. Nutr. 58 (Suppl.), 7245–7325 (1993).

    Google Scholar 

  20. Tannahill, R. Food in History (Crown, New York, 1989).

    Google Scholar 

  21. Cohen, M. N. in The Cambridge World History of Food Vol. 1 (eds Kiple, K. F. & Ornelas, K. C.) 63–71 (Cambridge Univ. Press, Cambridge, UK, 2000).

    Google Scholar 

  22. Baum, K. F., Dunn, D. T., Maude, G. H. & Serjeant, G. R. The painful crisis of homozygous sickle cell disease. A study of risk factors. Arch. Intern. Med. 147, 1231–1234 (1987).

    Article  CAS  Google Scholar 

  23. Luzzatto, L., Mehta, A. & Vulliamy, T. in The Metabolic and Molecular Bases of Inherited Disease 8th edn (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 4517–4553 (McGraw–Hill, New York, 2001).

    Google Scholar 

  24. Olney, R. S. Preventing morbidity and mortality from sickle cell disease. A public health perspective. Am. J. Prev. Med. 16, 116–121 (1999).

    Article  CAS  Google Scholar 

  25. Galloway, J. H. in The Cambridge World History of Food Vol. 1 (ed. Kiple, K. F. & Ornelas, K. C.) 437–449 (Cambridge Univ. Press, Cambridge, UK, 2000).

    Google Scholar 

  26. Glinsman, W. H. & Bowman, B. A. The public health significance of dietary fructose. Am. J. Clin. Nutr. 58 (Suppl.), 8205–8235 (1993).

    Google Scholar 

  27. Hollenbeck, C. Dietary fructose effects on lipoprotein metabolism and risk of coronary heart disease. Am. J. Clin. Nutr. 58 (Suppl.), 8005–8095 (1993).

    Google Scholar 

  28. Reiser, S. & Hallfrisch, J. Metabolic Effects of Dietary Fructose (CRC, Boca Raton, Florida, 1989).

    Google Scholar 

  29. Henry, R. R., Crapo, P. A. & Thorburn, A. W. Current issues in fructose metabolism. Ann. Rev. Nutr. 11, 21–39 (1991).

    Article  CAS  Google Scholar 

  30. Vuilleumier, S. Worldwide production of high-fructose syrup and crystalline fructose. Am. J. Clin. Nutr. 58 (Suppl.), 733–736 (1993).

    Article  Google Scholar 

  31. Bachmanov, A. R. et al. Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses. Mamm. Genome 8, 545–548 (1997).

    Article  CAS  Google Scholar 

  32. Max, M. et al. Tas1r3 encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus, Sac. Nature Genet. 28, 58–63 (2001).

    CAS  PubMed  Google Scholar 

  33. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    Article  CAS  Google Scholar 

  34. Masters-Harte, L. D. & Abdel-Rahman, S. W. Sucrose analgesia for minor procedures in newborn infants. Ann. Pharmacother. 35, 947–952 (2001).

    Article  CAS  Google Scholar 

  35. Tennyson, A. in The Poems of Tennyson (ed. Ricks, C.) 1040–1093 (Longmans, London, 1969).

    Google Scholar 

  36. Serjeant, G. R. & Serjeant, B. E. Sickle Cell Disease 3rd edn (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  37. Leikin, S. L. et al. Mortality in children and adolescents with sickle cell disease. Pediatrics 84, 500–508 (1989).

    CAS  PubMed  Google Scholar 

  38. Carson, P. E., Flanagan, C. L., Ickes, C. E. & Irving, A. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124, 484–485 (1956).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

aldolase B

G6PD

Sac/Tas1r3

TAS1R3

OMIM

glucose 6-phosphate dehydrogenase deficiency

hereditary fructose intolerance

non-insulin-dependent (type II) diabetes mellitus

phenylketonuria

sickle cell anaemia

FURTHER INFORMATION

Encyclopedia of Life Sciences

Fructose metabolism disorders

Glossary

ACIDOSIS

An excess of acid in the body fluids as a primary disturbance of hydrogen ion metabolism.

CENTRIFUGAL SUGAR

An industrial term for the product of modern sugar factories; commercial sugar is described as raw sugar if it is >96% sucrose and further refining generates the pure product. The terms 'centrifugal' and 'non-centrifugal' distinguish between the products of modern and traditional methods of manufacture: they refer to the methods used to separate sucrose crystals from the molasses.

FRUCTOSAEMIA

The presence of fructose in the blood.

GENETIC DRIFT

The random changes in allele frequency that occur because genes that appear in offspring are not a perfectly representative sample of the parental genes (for example, as occurs in small populations).

GLUCAGON

A pancreatic hormone released from the islets of Langerhans. It stimulates the formation of glucose, especially by activating liver phosphorylase, through the hormone-sensitive adenyl cyclase signalling pathway. Phosphorylase is the rate-limiting enzyme for the breakdown of glycogen.

HAPLOTYPE

An experimentally determined profile of genetic markers that are present on a single chromosome of any given individual.

HYPERMAGNESAEMIA

A high plasma concentration of ionized magnesium.

HYPERURICAEMIA

A high plasma-urate concentration.

HYPOGLYCAEMIA

A low blood-glucose concentration.

SICKLE CELL TRAIT

Heterozygosity for the inherited β-globin variant, HbS; the individual does not have sickle cell disease.

β-THALASSAEMIA

A group of inherited blood diseases caused by reduced synthesis of β-globin polypeptide chains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, T. The genetic consequences of our sweet tooth. Nat Rev Genet 3, 481–487 (2002). https://doi.org/10.1038/nrg815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing