Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The curious history of yeast mitochondrial DNA

Abstract

Forty years ago, soon after yeast mitochondrial DNA (mtDNA) was recognized, some animal versions of mtDNA were shown to comprise circular molecules. Supporting an idea that mitochondria had evolved from bacteria, this finding generated a dogmatic belief that yeast mtDNA was also circular, and the endless linear molecules actually observed in yeast were regarded as broken circles. This concept persisted for 30 years and has distorted our understanding of the true nature of the molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopic image of isolated mouse circular mtDNA.
Figure 2

References

  1. Wallace, D. C. Mitochondrial DNA mutations in diseases of energy metabolism. J. Bioenergy Biomembr. 26, 241–250 (1994).

    Article  CAS  Google Scholar 

  2. Ephrussi, B., Hottinguer, H. & Tavlitzki, J. Action de l'acriflavine sur les levures. II. Etude genetique du mutant 'petite colonies'. Ann. Inst. Pasteur 79, 419–450 (1949).

    Google Scholar 

  3. Ephrussi, B. in Nucleo-cytoplasmic Relations in Micro-organisms: Their Bearing on Cell Heredity and Differentiation (Clarendon, Oxford, UK, 1953).

    Google Scholar 

  4. Nass, M. M. K. & Nass, S. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J. Cell Biol. 19, 593–612 (1963).

    Article  CAS  Google Scholar 

  5. Schatz, G., Halsbrunner, E. & Tuppy, H. Deoxyribonucleic acid associated with yeast mitochondria. Biochem. Biophys. Res. Commun. 15, 127–132 (1964).

    Article  CAS  Google Scholar 

  6. Clark-Walker, G. D. & Linnane, A. W. In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem. Biophys. Res. Commun. 25, 8–13 (1966).

    Article  CAS  Google Scholar 

  7. Thomas, D. Y. & Wilkie, D. Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genet. Res. 11, 33–41 (1968).

    Article  CAS  Google Scholar 

  8. Van Bruggen, E. F. J., Borst, P., Ruttenberg, G. J. C. M., Gruber, M. & Kroon, A. M. Circular mitochondrial DNA. Biochim. Biophys. Acta 119, 437–439 (1966).

    Article  CAS  Google Scholar 

  9. Sinclair, J. H. & Stevens, B. J. Circular DNA filaments from mouse mitochondria. Proc. Natl Acad. Sci. USA 56, 508–514 (1966).

    Article  CAS  Google Scholar 

  10. Altmann, R. in Die Elementarorganismen und ihre Beziehungen zu den Zellen (Veit & Comp., Leipzig, Germany, 1890).

    Google Scholar 

  11. Cairns, J. The bacterial chromosome. Sci. Am. 214, 36–44 (1966).

    Article  CAS  Google Scholar 

  12. Suyama, Y. & Miura, K. Size and structural variations of mitochondrial DNA. Proc. Natl Acad. Sci. USA 60, 235–242 (1968).

    Article  CAS  Google Scholar 

  13. Bendich, A. J. Reaching for the ring: the study of mitochondrial genome structure. Curr. Genet. 24, 279–290 (1993).

    Article  CAS  Google Scholar 

  14. Hollenberg, C. P., Borst, P., Thuring, R. W. J. & Van Bruggen, E. F. J. Size, structure and genetic complexity of yeast mitochondrial DNA. Biochim. Biophys. Acta 186, 417–419 (1969).

    Article  CAS  Google Scholar 

  15. Dujon, B. in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 505–635 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1981).

    Google Scholar 

  16. Bauer, W. & Vinograd, J. The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol. 33, 141–171 (1968).

    Article  CAS  Google Scholar 

  17. Sederoff, R. R. Structural variation in mitochondrial DNA. Adv. Genet. 22, 1–108 (1984).

    Article  CAS  Google Scholar 

  18. Maleszka, R., Skelly, P. J. & Clark-Walker, G. D. Rolling circle replication of DNA in yeast mitochondria. EMBO J. 10, 3923–3929 (1991).

    Article  CAS  Google Scholar 

  19. Gilbert, W. & Dressler, D. DNA replication: the rolling circle model. Cold Spring Harb. Symp. Quant. Biol. 33, 473–484 (1968).

    Article  CAS  Google Scholar 

  20. Oldenburg, D. J. & Bendich, A. J. Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J. Mol. Biol. 310, 549–562 (2001).

    Article  CAS  Google Scholar 

  21. Bendich, A. J. & Smith, S. B. Moving pictures and pulsed field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr. Genet. 17, 421–425 (1990).

    Article  CAS  Google Scholar 

  22. Bendich, A. J. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J. Mol. Biol. 255, 564–588 (1996).

    Article  CAS  Google Scholar 

  23. Maleszka, R. & Clark-Walker, G. D. In vivo conformation of mitochondrial DNA in fungi and zoosporic moulds. Curr. Genet. 22, 341–344 (1992).

    Article  CAS  Google Scholar 

  24. Wesolowski, M. & Fukuhara, H. Linear mitochondrial deoxyribonucleic acid from the yeast Hansenula mrakii. Mol. Cell. Biol. 1, 387–393 (1981).

    Article  CAS  Google Scholar 

  25. Nosek, J., Tomaska, L., Fukuhara, H., Suyama, Y. & Kovac, L. Linear mitochondrial genomes: 30 years down the line. Trends Genet. 14, 184–188 (1998).

    Article  CAS  Google Scholar 

  26. Moore, L. J. & Coleman, A. W. The linear 20 kb mitochondrial genome of Pandorina morum (Volvocaceae, Chlorophyta). Plant Mol. Biol. 13, 459–465 (1989).

    Article  CAS  Google Scholar 

  27. Ryan, R., Grant, D., Chiang, K. S. & Swift, H. Isolation and characterization of mitochondrial DNA from Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 75, 3268–3272 (1978).

    Article  CAS  Google Scholar 

  28. Maleszka, R. Electrophoretic analysis of the nuclear and organellar genomes in the ultra-small alga Cyanidioschyzon merolae. Curr. Genet. 24, 548–550 (1993).

    Article  CAS  Google Scholar 

  29. Dunn, P. P., Stephens, P. J. & Shirley, M. W. Eimeria tenella: two species of extrachromosomal DNA revealed by pulsed-field gel electrophoresis. Parasitol. Res. 84, 272–275 (1998).

    Article  CAS  Google Scholar 

  30. Wilson, R. J. M. & Williamson, D. H. Extrachromosomal DNA in the Apicomplexa. Microbiol. Mol. Biol. Rev. 61, 1–16 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Manning, J. E., Wolstenholme, D. R., Ryan, R. S., Hunter, J. A. & Richards, O. C. Circular chloroplast DNA from Euglena gracilis. Proc. Natl Acad. Sci. USA 68, 1169–1173 (1971).

    Article  CAS  Google Scholar 

  32. Pont-Kingdon, G. et al. Mitochondrial DNA of Hydra attenuata (Cnidaria): a sequence that includes an end of one linear molecule and the genes for l-rRNA, tRNA(f-Met), tRNA(Trp), COII, and ATPase8. J. Mol. Evol. 51, 404–415 (2000).

    Article  CAS  Google Scholar 

  33. Backert, S., Dorfel, P. & Borner, T. Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr. Genet. 28, 390–399 (1995).

    Article  CAS  Google Scholar 

  34. Williamson, D. H. et al. The in vivo conformation of the plastid DNA of Toxoplasma gondii: implications for replication. J. Mol. Biol. 306, 159–168 (2001).

    Article  CAS  Google Scholar 

  35. Deng, X. W., Wing, R. A. & Gruissem, W. The chloroplast genome exists in multimeric forms. Proc. Natl Acad. Sci. USA 86, 4156–4160 (1989).

    Article  CAS  Google Scholar 

  36. Gleeson, M. T. & Johnson, A. M. Physical characterisation of the plastid DNA in Neospora caninum. Int. J. Parasitol. 29, 1563–1573 (1999).

    Article  CAS  Google Scholar 

  37. Blanc, H. & Dujon, B. Replicator regions of the yeast mitochondrial DNA responsible for suppressiveness. Proc. Natl Acad. Sci. USA 77, 3942–3946 (1980).

    Article  CAS  Google Scholar 

  38. Baldacci, G., Cherif-Zahar, B. & Bernardi, G. The initiation of DNA replication in the mitochondrial genome of yeast. EMBO J. 3, 2115–2120 (1984).

    Article  CAS  Google Scholar 

  39. Fangman, W. L., Henly, J. W. & Brewer, B. J. RPO41-independent maintenance of [Irho-] mitochondrial DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 10–15 (1990).

    Article  CAS  Google Scholar 

  40. Fangman, W. L. & Dujon, B. Yeast mitochondrial genomes consisting of only A·T base pairs replicate and exhibit suppressiveness. Proc. Natl Acad. Sci. USA 81, 7156–7160 (1984).

    Article  CAS  Google Scholar 

  41. Fangman, W. L., Henly, J. W., Churchill, G. & Brewer, B. J. Stable maintenance of a 35-base-pair yeast mitochondrial genome. Mol. Cell. Biol. 9, 1917–1921 (1989).

    Article  CAS  Google Scholar 

  42. Lecrenier, N. & Foury, F. New features of mitochondrial DNA replication system in yeast and man. Gene 246, 37–48 (2000).

    Article  CAS  Google Scholar 

  43. Simon, V. R., Karmon, S. L. & Pon, L. A. Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil. Cytoskel. 37, 199–210 (1997).

    Article  CAS  Google Scholar 

  44. Williamson, D. H. & Moustacchi, E. The synthesis of mitochondrial DNA during the cell cycle in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 42, 195–201 (1971).

    Article  CAS  Google Scholar 

  45. Sena, E. P., Welch, J. W., Halvorson, H. O. & Fogel, S. Nuclear and mitochondrial deoxyribonucleic acid replication during mitosis in Saccharomyces cerevisiae. J. Bacteriol. 123, 497–504 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Williamson, D. H. & Fennell, D. J. Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Mol. Gen. Genet. 131, 193–207 (1974).

    Article  CAS  Google Scholar 

  47. Sena, E., Welch, J. & Fogel, S. Nuclear and mitochondrial DNA replication during zygote formation and maturation in yeast. Science 194, 433–435 (1976).

    Article  CAS  Google Scholar 

  48. Leff, J. & Eccleshall, T. R. Replication of bromodeoxyuridylate-substituted mitochondrial DNA in yeast. J. Bacteriol. 135, 436–444 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lockshon, D. et al. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell 81, 947–955 (1995).

    Article  CAS  Google Scholar 

  50. Shannon, C., Rao, A., Douglass, S. & Criddle, R. S. Recombination in yeast mitochondrial DNA. J. Supramol. Struct. 1, 145–152 (1972).

    Article  CAS  Google Scholar 

  51. Putrament, A. & Ejchart, A. in Saccharomyces cerevisiae: the origin of mit mutants. Genet. Res. 38, 267–279 (1981).

    Article  CAS  Google Scholar 

  52. Birky, C. W. Jr. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu. Rev. Genet. 35, 125–148 (2001).

    Article  CAS  Google Scholar 

  53. Birky, C. W. J. & Skavaril, R. V. Maintenance of genetic homogeneity in systems with multiple genomes. Genet. Res. 27, 249–265 (1976).

    Article  CAS  Google Scholar 

  54. Williamson, D. H. & Fennell, D. J. in Yeast Cells. Methods in Cell Biology Vol. 12 (ed. Prescott, D. M.) 335–351 (Academic, New York, 1975).

  55. Stevens, B. J. & White, J. G. Computer reconstruction of mitochondria from yeast. Methods Enzymol. 56, 718–728 (1979).

    Article  CAS  Google Scholar 

  56. Williamson, D. H. in Genetics, Biogenesis and Bioenergetics of Mitochondria (eds Bandlow, W., Schweyen, R. J., Thomas, D. Y., Wolf, K. & Kaudewitz, F.) 117–124 (Walter de Gruyter, Berlin and New York, 1976).

    Google Scholar 

  57. Williamson, D. H., Johnston, L. H., Richmond, K. M. V. & Game, J. C. in Mitochondria 1977. Genetics and Biogenesis of Mitochondria (eds Bandlow, W., Schweyen, R. J., Wolf, K. & Kaudewitz, F.) 1–24 (Walter de Gruyter, Berlin, 1977).

    Google Scholar 

  58. Richards, O. C. & Ryan, R. S. Synthesis and turnover of Euglena gracilis mitochondrial DNA. J. Mol. Biol. 82, 57–75 (1974).

    Article  CAS  Google Scholar 

  59. Preiser, P. R. et al. Recombination associated with replication of malarial mitochondrial DNA. EMBO J. 15, 684–693 (1996).

    Article  CAS  Google Scholar 

  60. Mosig, G. in Bacteriophage T4 (eds Mathews, C., Kutter, E., Mosig, G. & Berget, P.) 120–130 (American Society for Microbiology Press, Washington, DC, 1983).

    Google Scholar 

  61. Viret, J. F., Bravo, A. & Alonso, J. C. Recombination-dependent concatemeric plasmid replication. Microbiol. Rev. 55, 675–683 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25, 156–165 (2000).

    Article  CAS  Google Scholar 

  63. Backert, S. & Borner, T. Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.). Curr. Genet. 37, 304–314 (2000).

    Article  CAS  Google Scholar 

  64. MacAlpine, D. M., Kolesar, J., Okamoto, K., Butow, R. A. & Perlman, P. S. Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. EMBO J. 20, 1807–1817 (2001).

    Article  CAS  Google Scholar 

  65. Ephrussi, B., Hottinguer, H. & Roman, H. Supressiveness: a new factor in the genetic determinism of respiratory enzymes in yeast. Proc. Natl Acad. Sci. USA 41, 1065–1071 (1955).

    Article  CAS  Google Scholar 

  66. Dujon, B., Colson, A. M. & Slonimski, P. P. in Mitochondria 1977. Genetics and Biogenesis of Mitochondria (eds Bandlow, W. S., Schweyen, R. J., Wolf, K. & Kaudewitz, F.) 579–669 (Walter de Gruyter, Berlin, 1977).

    Google Scholar 

  67. Foury, F., Roganti, T., Lecrenier, N. & Purnelle, B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440, 325–331 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Escherichia coli

Saccharomyces cerevisiae

FURTHER INFORMATION

Encyclopedia of Life Sciences

Mitochondria: origin

Glossary

APICOMPLEXAN

A protistan phylum that is characterized by an apical complex for penetrating host cells. All members are obligatory intracellular parasites, and the group includes the causative organisms of malaria and several diseases of humans and animals.

CAIRNS-TYPE ORIGIN

Named after their discoverer John Cairns, these are bi-directional replication origins that are found in many classes of DNA molecules.

CsCl DENSITY GRADIENT

DNA molecules of different buoyant density (usually determined by differences in base composition) can be separated by centrifugal sedimentation through a CsCl solution that is arranged to have a continuous gradient in density. By exposing the DNA to a dye known as ethidium

bromide, density gradients can also be used to separate circular and linear molecules.

GENE CONVERSION

The non-reciprocal transfer of information in either direction between homologous genes as a consequence of heteroduplex formation, followed by the repair of mismatches in the heteroduplex.

HOMOPLASMIC

A cell or individual whose chloroplasts or mitochondria all have identical genotypes.

15N DENSITY-SHIFT EXPERIMENT

The method by which DNA molecules that replicate in the presence of a nitrogen source containing 15N can be separated from non-replicating molecules by virtue of their increased buoyant density in CsCl gradients.

NUCLEOID

An aggregate of DNA molecules in bacteria or in cytoplasmic organelles such as mitochondria or chloroplasts.

POLYDISPERSE

Describes populations of molecules that occur in a continuum of sizes, with no specific discrete size classes.

ROLLING-CIRCLE REPLICATION

A mode of DNA replication used by circular DNAs that generates molecules that look like lariats. It was traditionally associated with certain bacterial plasmids and viruses, but is increasingly recognized as having a wider distribution.

ZONAL ROTOR CELL-CYCLE FRACTIONATION

The method by which microbial cells, such as yeast, which grow in size during the cell division cycle, can, at different stages of the cycle, be separated for bulk analysis by means of a so-called 'zonal centrifuge rotor'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, D. The curious history of yeast mitochondrial DNA. Nat Rev Genet 3, 475–481 (2002). https://doi.org/10.1038/nrg814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing