Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From evolutionary genetics to human immunology: how selection shapes host defence genes

Key Points

  • Pathogens and infectious diseases have been, and still are, paramount among the threats to human health and survival. Exposure to infection has therefore imposed strong selective pressures on the evolution of the human genome.

  • The field of evolutionary genetics of immunity searches the genome of present-day human populations for molecular 'footprints' of natural selection that have been exerted by past infections.

  • Some of the strongest evidence of selection in the human genome has been obtained for genes involved in immunity and host defence, as revealed by genome-wide scans for selection among primate species and within human populations.

  • Evolutionary genetics reveal genes that have a redundant role in host defence and show how, in certain circumstances, recent gene loss can represent a selective advantage for the host.

  • The signatures of positive selection observed at some disease-associated SNPs suggest that the increasing prevalence of autoimmune disorders in modern societies might, at least partially, be the consequence of past selective events to combat infection.

  • Characterizing how natural selection has targeted immunity-related genes provides important clues for delineating human genes and immunological pathways that have major roles in host defence and for predicting which regions of the genome are associated with susceptibility to infection or disease outcome.

  • Integrative approaches that combine evolutionary genetics data with immunological phenotypes will help to elucidate more precisely the immunological mechanisms that have been targeted by natural selection in humans.

Abstract

Pathogens have always been a major cause of human mortality, so they impose strong selective pressure on the human genome. Data from population genetic studies, including genome-wide scans for selection, are providing important insights into how natural selection has shaped immunity and host defence genes in specific human populations and in the human species as a whole. These findings are helping to delineate genes that are important for host defence and to increase our understanding of how past selection has had an impact on disease susceptibility in modern populations. A tighter integration between population genetic studies and immunological phenotype studies is now necessary to reveal the mechanisms that have been crucial for our past and present survival against infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic map of immunity genes that are candidates for positive selection.
Figure 2: Positive selection targeting SNPs associated with disease.
Figure 3: Towards the identification of adaptive immunological phenotypes.

Similar content being viewed by others

References

  1. Casanova, J. L. & Abel, L. Inborn errors of immunity to infection: the rule rather than the exception. J. Exp. Med. 202, 197–201 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Haldane, J. B. S. Disease and evolution. Ric. Sci. 19 (Suppl. A), 68–76 (1949).

    Google Scholar 

  3. Ausubel, F. M. Are innate immune signaling pathways in plants and animals conserved? Nature Immunol. 6, 973–979 (2005).

    CAS  Google Scholar 

  4. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    CAS  PubMed  Google Scholar 

  5. Flajnik, M. F. & Du Pasquier, L. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 25, 640–644 (2004).

    CAS  PubMed  Google Scholar 

  6. Kimbrell, D. A. & Beutler, B. The evolution and genetics of innate immunity. Nature Rev. Genet. 2, 256–267 (2001).

    CAS  PubMed  Google Scholar 

  7. Lazzaro, B. P. & Little, T. J. Immunity in a variable world. Phil. Trans. R. Soc. Lond. B 364, 15–26 (2009).

    Google Scholar 

  8. Schulenburg, H., Kurtz, J., Moret, Y. & Siva-Jothy, M. T. Introduction. Ecological immunology. Phil. Trans. R. Soc. Lond. B 364, 3–14 (2009).

    Google Scholar 

  9. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  10. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007). An integrated view of the innate and adaptive components of the immune system, how they work and interact, and their role in host defence.

    CAS  PubMed  Google Scholar 

  11. Allison, A. C. Protection afforded by sickle-cell trait against subtertian malareal infection. BMJ 1, 290–294 (1954). The seminal paper that showed that 'sickle-cell' heterozygotes have increased protection against malaria.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C. & Clark, A. G. Recent and ongoing selection in the human genome. Nature Rev. Genet. 8, 857–868 (2007).

    CAS  PubMed  Google Scholar 

  13. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Akey, J. M. Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res. 19, 711–722 (2009). References 12–14 are excellent reviews on how recent positive selection has targeted the human genome. They discuss the major findings of genome-wide scans for selection and their strengths and weaknesses.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Trowsdale, J. & Parham, P. Mini-review: defense strategies and immunity-related genes. Eur. J. Immunol. 34, 7–17 (2004).

    CAS  PubMed  Google Scholar 

  16. Varki, A. A chimpanzee genome project is a biomedical imperative. Genome Res. 10, 1065–1070 (2000).

    CAS  PubMed  Google Scholar 

  17. Varki, A. & Altheide, T. K. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res. 15, 1746–1758 (2005).

    CAS  PubMed  Google Scholar 

  18. Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).

    CAS  PubMed  Google Scholar 

  19. Arbiza, L., Dopazo, J. & Dopazo, H. Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput. Biol. 2, e38 (2006).

    PubMed  PubMed Central  Google Scholar 

  20. Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005). This paper assesses the genome-wide impact of weak negative and positive selection on protein-coding regions since humans and chimpanzees started to diverge.

    CAS  PubMed  Google Scholar 

  21. The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  22. Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007).

    CAS  PubMed  Google Scholar 

  23. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).

    PubMed  PubMed Central  Google Scholar 

  24. Kosiol, C. et al. Patterns of positive selection in six mammalian genomes. PLoS Genet. 4, e1000144 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).

  26. Clark, A. G. et al. Inferring nonneutral evolution from human–chimp–mouse orthologous gene trios. Science 302, 1960–1963 (2003). The first genome-wide analysis of genes evolving under positive selection in the human evolutionary lineage.

    CAS  PubMed  Google Scholar 

  27. Bakewell, M. A., Shi, P. & Zhang, J. More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc. Natl Acad. Sci. USA 104, 7489–7494 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vamathevan, J. J. et al. The role of positive selection in determining the molecular cause of species differences in disease. BMC Evol. Biol. 8, 273 (2008).

    PubMed  PubMed Central  Google Scholar 

  29. Sharp, P. M., Shaw, G. M. & Hahn, B. H. Simian immunodeficiency virus infection of chimpanzees. J. Virol. 79, 3891–3902 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Silvestri, G. Immunity in natural SIV infections. J. Intern. Med. 265, 97–109 (2009).

    CAS  PubMed  Google Scholar 

  31. Keele, B. F. et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460, 515–519 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Seeler, J. S., Muchardt, C., Suessle, A. & Gaynor, R. B. Transcription factor PRDII-BF1 activates human immunodeficiency virus type 1 gene expression. J. Virol. 68, 1002–1009 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434–1440 (2005).

    CAS  PubMed  Google Scholar 

  34. Degenhardt, J. D. et al. Copy number variation of CCL3-like genes affects rate of progression to simian-AIDS in rhesus macaques (Macaca mulatta). PLoS Genet. 5, e1000346 (2009).

    PubMed  PubMed Central  Google Scholar 

  35. Baum, J., Ward, R. H. & Conway, D. J. Natural selection on the erythrocyte surface. Mol. Biol. Evol. 19, 223–229 (2002).

    CAS  PubMed  Google Scholar 

  36. Wang, H. Y., Tang, H., Shen, C. K. & Wu, C. I. Rapidly evolving genes in human. I. The glycophorins and their possible role in evading malaria parasites. Mol. Biol. Evol. 20, 1795–1804 (2003).

    CAS  PubMed  Google Scholar 

  37. Wilder, J. A., Hewett, E. K. & Gansner, M. E. Molecular evolution of GYPC: evidence for recent structural innovation and positive selection in humans. Mol. Biol. Evol. 13 Aug 2009 (doi:10.1093/molbev/msp183).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Maier, A. G. et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nature Med. 9, 87–92 (2003).

    CAS  PubMed  Google Scholar 

  39. Sim, B. K., Chitnis, C. E., Wasniowska, K., Hadley, T. J. & Miller, L. H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264, 1941–1944 (1994).

    CAS  PubMed  Google Scholar 

  40. Martin, M. J., Rayner, J. C., Gagneux, P., Barnwell, J. W. & Varki, A. Evolution of human–chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl Acad. Sci. USA 102, 12819–12824 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    CAS  PubMed  Google Scholar 

  42. Blekhman, R., Oshlack, A., Chabot, A. E., Smyth, G. K. & Gilad, Y. Gene regulation in primates evolves under tissue-specific selection pressures. PLoS Genet. 4, e1000271 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Hahn, M. W., Demuth, J. P. & Han, S. G. Accelerated rate of gene gain and loss in primates. Genetics 177, 1941–1949 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Wang, X., Grus, W. E. & Zhang, J. Gene losses during human origins. PLoS Biol. 4, e52 (2006).

    PubMed  PubMed Central  Google Scholar 

  45. Dumas, L. et al. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res. 17, 1266–1277 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Carlson, C. S. et al. Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res. 15, 1553–1565 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelley, J. L., Madeoy, J., Calhoun, J. C., Swanson, W. & Akey, J. M. Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Res. 16, 980–989 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Williamson, S. H. et al. Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. Barreiro, L. B., Laval, G., Quach, H., Patin, E. & Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nature Genet. 40, 340–345 (2008).

    CAS  PubMed  Google Scholar 

  50. Kimura, R., Fujimoto, A., Tokunaga, K. & Ohashi, J. A practical genome scan for population-specific strong selective sweeps that have reached fixation. PLoS ONE 2, e286 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang, K., Thornton, K. R. & Stoneking, M. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol. 5, e171 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006). This paper reports a genome-wide scan, based on haplotype structure information, for recent and ongoing positive selection in human populations.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang, E. T., Kodama, G., Baldi, P. & Moyzis, R. K. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl Acad. Sci. USA 103, 135–140 (2006).

    CAS  PubMed  Google Scholar 

  55. Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1991).

    Google Scholar 

  57. Fumagalli, M. et al. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res. 19, 199–212 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fumagalli, M. et al. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J. Exp. Med. 206, 1395–1408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Prugnolle, F. et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr. Biol. 15, 1022–1027 (2005). The first study to correlate the worldwide genetic diversity at HLA class I genes with pathogen presence.

    CAS  PubMed  Google Scholar 

  60. Hughes, A. L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    CAS  PubMed  Google Scholar 

  61. Hedrick, P. W., Whittam, T. S. & Parham, P. Heterozygosity at individual amino acid sites: extremely high levels for HLA-A and -B genes. Proc. Natl Acad. Sci. USA 88, 5897–5901 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Takahata, N., Satta, Y. & Klein, J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130, 925–938 (1992). References 60–62 describe how the extraordinary levels of genetic diversity observed at the major histocompatibility complex may result from the action of balancing selection.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bamshad, M. J. et al. A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proc. Natl Acad. Sci. USA 99, 10539–10544 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Novembre, J., Galvani, A. P. & Slatkin, M. The geographic spread of the CCR5 Δ32 HIV-resistance allele. PLoS Biol. 3, e339 (2005).

    PubMed  PubMed Central  Google Scholar 

  65. Stephens, J. C. et al. Dating the origin of the CCR532 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sabeti, P. C. et al. The case for selection at CCR532. PLoS Biol. 3, e378 (2005).

    PubMed  PubMed Central  Google Scholar 

  67. Arenzana-Seisdedos, F. & Parmentier, M. Genetics of resistance to HIV infection: role of co-receptors and co-receptor ligands. Semin. Immunol. 18, 387–403 (2006).

    CAS  PubMed  Google Scholar 

  68. Gonzalez, E. et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc. Natl Acad. Sci. USA 96, 12004–12009 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lalani, A. S. et al. Use of chemokine receptors by poxviruses. Science 286, 1968–1971 (1999).

    CAS  PubMed  Google Scholar 

  70. Single, R. M. et al. Global diversity and evidence for coevolution of KIR and HLA. Nature Genet. 39, 1114–1119 (2007).

    CAS  PubMed  Google Scholar 

  71. Chaix, R., Cao, C. & Donnelly, P. Is mate choice in humans MHC-dependent? PLoS Genet. 4, e1000184 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Ober, C. et al. HLA and mate choice in humans. Am. J. Hum. Genet. 61, 497–504 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Parham, P. & Ohta, T. Population biology of antigen presentation by MHC class I molecules. Science 272, 67–74 (1996).

    CAS  PubMed  Google Scholar 

  74. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005). The most comprehensive review of the genetic basis of resistance to malaria in humans and the selective pressures that are exerted by malaria in the human genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Flint, J., Harding, R. M., Boyce, A. J. & Clegg, J. B. The population genetics of the haemoglobinopathies. Baillieres Clin. Haematol. 11, 1–51 (1998).

    CAS  PubMed  Google Scholar 

  77. Agarwal, A. et al. Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood 96, 2358–2363 (2000).

    CAS  PubMed  Google Scholar 

  78. Modiano, D. et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 414, 305–308 (2001).

    CAS  PubMed  Google Scholar 

  79. Chotivanich, K. et al. Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P. falciparum malaria. Blood 100, 1172–1176 (2002).

    CAS  PubMed  Google Scholar 

  80. Ohashi, J. et al. Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection. Am. J. Hum. Genet. 74, 1198–1208 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chitnis, C. E. & Miller, L. H. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 180, 497–506 (1994).

    CAS  PubMed  Google Scholar 

  82. Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genet. 10, 224–228 (1995).

    CAS  PubMed  Google Scholar 

  83. Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, 1994).

    Google Scholar 

  84. Hamblin, M. T. & Di Rienzo, A. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–1679 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hamblin, M. T., Thompson, E. E. & Di Rienzo, A. Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–383 (2002).

    PubMed  Google Scholar 

  86. Aitman, T. J. et al. Malaria susceptibility and CD36 mutation. Nature 405, 1015–1016 (2000).

    CAS  PubMed  Google Scholar 

  87. Ruwende, C. & Hill, A. Glucose-6-phosphate dehydrogenase deficiency and malaria. J. Mol. Med. 76, 581–588 (1998).

    CAS  PubMed  Google Scholar 

  88. Sabeti, P. et al. CD40L association with protection from severe malaria. Genes Immun. 3, 286–291 (2002).

    CAS  PubMed  Google Scholar 

  89. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  90. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS  PubMed  Google Scholar 

  91. Currat, M. et al. Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the βS Senegal mutation. Am. J. Hum. Genet. 70, 207–223 (2002).

    CAS  PubMed  Google Scholar 

  92. Saunders, M. A., Hammer, M. F. & Nachman, M. W. Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics 162, 1849–1861 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tishkoff, S. A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

    CAS  PubMed  Google Scholar 

  94. Joy, D. A. et al. Early origin and recent expansion of Plasmodium falciparum. Science 300, 318–321 (2003).

    CAS  PubMed  Google Scholar 

  95. Coluzzi, M., Sabatini, A., della Torre, A., Di Deco, M. A. & Petrarca, V. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298, 1415–1418 (2002).

    CAS  PubMed  Google Scholar 

  96. Barreiro, L. B. et al. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet. 5, e1000562 (2009). The first evolutionary dissection of how natural selection has targeted the TLR family members in humans.

    PubMed  PubMed Central  Google Scholar 

  97. Dobson, A. in The Cambridge Encyclopedia of Human Evolution (eds Jones, S., Martin, R. & Pilbeam, D.) 411–420 (Cambridge Univ. Press, 1992).

    Google Scholar 

  98. Quintana-Murci, L., Alcais, A., Abel, L. & Casanova, J. L. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nature Immunol. 8, 1165–1171 (2007).

    CAS  Google Scholar 

  99. Garred, P., Larsen, F., Seyfarth, J., Fujita, R. & Madsen, H. O. Mannose-binding lectin and its genetic variants. Genes Immun. 7, 85–94 (2006).

    CAS  PubMed  Google Scholar 

  100. Casanova, J. L. & Abel, L. Human mannose-binding lectin in immunity: friend, foe, or both? J. Exp. Med. 199, 1295–1299 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Eisen, D. P. & Minchinton, R. M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37, 1496–1505 (2003).

    CAS  PubMed  Google Scholar 

  102. Verdu, P. et al. Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum. Mol. Genet. 15, 2650–2658 (2006).

    CAS  PubMed  Google Scholar 

  103. Bernig, T. et al. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun. 5, 461–476 (2004).

    CAS  PubMed  Google Scholar 

  104. Mukherjee, S., Sarkar-Roy, N., Wagener, D. K. & Majumder, P. P. Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc. Natl Acad. Sci. USA 106, 7073–7078 (2009).

    PubMed  PubMed Central  Google Scholar 

  105. Walsh, E. C. et al. Searching for signals of evolutionary selection in 168 genes related to immune function. Hum. Genet. 119, 92–102 (2006).

    CAS  PubMed  Google Scholar 

  106. Lynch, N. J. et al. L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J. Immunol. 172, 1198–1202 (2004).

    CAS  PubMed  Google Scholar 

  107. Roos, A. et al. Antibody-mediated activation of the classical pathway of complement may compensate for mannose-binding lectin deficiency. Eur. J. Immunol. 34, 2589–2598 (2004).

    CAS  PubMed  Google Scholar 

  108. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    CAS  PubMed  Google Scholar 

  109. Hawn, T. R. et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J. Exp. Med. 198, 1563–1572 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wlasiuk, G., Khan, S., Switzer, W. M. & Nachman, M. W. A history of recurrent positive selection at the Toll-like receptor 5 in primates. Mol. Biol. Evol. 26, 937–949 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hawn, T. R. et al. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 102, 10593–10597 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006).

    CAS  Google Scholar 

  113. Miao, E. A., Andersen-Nissen, E., Warren, S. E. & Aderem, A. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin. Immunopathol. 29, 275–288 (2007).

    CAS  PubMed  Google Scholar 

  114. Olson, M. V. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64, 18–23 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hirayasu, K. et al. Evidence for natural selection on leukocyte immunoglobulin-like receptors for HLA class I in Northeast Asians. Am. J. Hum. Genet. 82, 1075–1083 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Seixas, S. et al. Sequence diversity at the proximal 14q32.1 SERPIN subcluster: evidence for natural selection favoring the pseudogenization of SERPINA2. Mol. Biol. Evol. 24, 587–598 (2007).

    CAS  PubMed  Google Scholar 

  117. Xue, Y. et al. Spread of an inactive form of caspase-12 in humans is due to recent positive selection. Am. J. Hum. Genet. 78, 659–670 (2006). An intriguing example of how the loss of an immunity-related gene can represent a selective advantage in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yngvadottir, B. et al. A genome-wide survey of the prevalence and evolutionary forces acting on human nonsense SNPs. Am. J. Hum. Genet. 84, 224–234 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Saleh, M. et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75–79 (2004).

    CAS  PubMed  Google Scholar 

  120. Scott, A. M. & Saleh, M. The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ. 14, 23–31 (2007).

    CAS  PubMed  Google Scholar 

  121. Perry, G. H. et al. Copy number variation and evolution in humans and chimpanzees. Genome Res. 18, 1698–1710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Blekhman, R. et al. Natural selection on genes that underlie human disease susceptibility. Curr. Biol. 18, 883–889 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nielsen, R. et al. Darwinian and demographic forces affecting human protein coding genes. Genome Res. 19, 838–849 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    CAS  PubMed  Google Scholar 

  125. von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    CAS  PubMed  Google Scholar 

  127. Casanova, J. L. & Abel, L. Human genetics of infectious diseases: a unified theory. EMBO J. 26, 915–922 (2007). An important review of the genetic basis of infectious diseases in humans, bridging the dysfunctional gap between Mendelian genetics and population-based complex genetics.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Di Rienzo, A. Population genetics models of common diseases. Curr. Opin. Genet. Dev. 16, 630–636 (2006).

    CAS  PubMed  Google Scholar 

  129. Smirnova, I., Hamblin, M. T., McBride, C., Beutler, B. & Di Rienzo, A. Excess of rare amino acid polymorphisms in the Toll-like receptor 4 in humans. Genetics 158, 1657–1664 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schroder, N. W. & Schumann, R. R. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 5, 156–164 (2005).

    PubMed  Google Scholar 

  131. Ma, X. et al. Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS ONE 2, e1318 (2007).

    PubMed  PubMed Central  Google Scholar 

  132. Misch, E. A. et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl. Trop. Dis. 2, e231 (2008).

    PubMed  PubMed Central  Google Scholar 

  133. Pickrell, J. K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gilad, Y., Rifkin, S. A. & Pritchard, J. K. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24, 408–415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dimas, A. S. et al. Modifier effects between regulatory and protein-coding variation. PLoS Genet. 4, e1000244 (2008).

    PubMed  PubMed Central  Google Scholar 

  136. Stranger, B. E. et al. Population genomics of human gene expression. Nature Genet. 39, 1217–1224 (2007).

    CAS  PubMed  Google Scholar 

  137. Kudaravalli, S., Veyrieras, J. B., Stranger, B. E., Dermitzakis, E. T. & Pritchard, J. K. Gene expression levels are a target of recent natural selection in the human genome. Mol. Biol. Evol. 26, 649–658 (2009).

    CAS  PubMed  Google Scholar 

  138. Dimas, A. S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ko, D. C. et al. A genome-wide in vitro bacterial-infection screen reveals human variation in the host response associated with inflammatory disease. Am. J. Hum. Genet. 85, 214–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  141. Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).

    CAS  PubMed  Google Scholar 

  142. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    CAS  Google Scholar 

  143. Leulier, F. & Lemaitre, B. Toll-like receptors — taking an evolutionary approach. Nature Rev. Genet. 9, 165–178 (2008). An outstanding overview of the origins, evolution and different functions of TLRs across the animal kingdom.

    CAS  PubMed  Google Scholar 

  144. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nature Immunol. 7, 131–137 (2006).

    CAS  Google Scholar 

  145. Geijtenbeek, T. B., van Vliet, S. J., Engering, A., ' t Hart, B. A. & van Kooyk, Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54 (2004).

    CAS  PubMed  Google Scholar 

  146. Fritz, J. H., Ferrero, R. L., Philpott, D. J. & Girardin, S. E. Nod-like proteins in immunity, inflammation and disease. Nature Immunol. 7, 1250–1257 (2006).

    CAS  Google Scholar 

  147. Takeuchi, O. & Akira, S. Recognition of viruses by innate immunity. Immunol. Rev. 220, 214–224 (2007).

    CAS  PubMed  Google Scholar 

  148. Schatz, D. G., Oettinger, M. A. & Schlissel, M. S. V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 10, 359–383 (1992).

    CAS  PubMed  Google Scholar 

  149. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol. 1, 177–186 (2001).

    CAS  Google Scholar 

  150. Klein, J. Natural History of the Major Histocompatibility Complex (Wiley, New York, 1986).

    Google Scholar 

  151. McDevitt, H. O. Discovering the role of the major histocompatibility complex in the immune response. Annu. Rev. Immunol. 18, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  152. Hurst, L. D. Genetics and the understanding of selection. Nature Rev. Genet. 10, 83–93 (2009).

    CAS  PubMed  Google Scholar 

  153. Nielsen, R. Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197–218 (2005).

    CAS  PubMed  Google Scholar 

  154. Kreitman, M. Methods to detect selection in populations with applications to the human. Annu. Rev. Genomics Hum. Genet. 1, 539–559 (2000). References 152–154 are thorough reviews on how natural selection acts, its signatures and implications, and the different methods used for detecting selection based on population genetic data.

    CAS  PubMed  Google Scholar 

  155. Eyre-Walker, A. & Keightley, P. D. High genomic deleterious mutation rates in hominids. Nature 397, 344–347 (1999).

    CAS  PubMed  Google Scholar 

  156. Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Przeworski, M., Coop, G. & Wall, J. D. The signature of positive selection on standing genetic variation. Evolution 59, 2312–2323 (2005).

    PubMed  Google Scholar 

  158. Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).

    PubMed  PubMed Central  Google Scholar 

  159. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    CAS  PubMed  Google Scholar 

  160. Nielsen, R. & Yang, Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–503 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Guindon, S., Black, M. & Rodrigo, A. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Control of the false discovery rate applied to the detection of positively selected amino acid sites. Mol. Biol. Evol. 23, 919–926 (2006).

    CAS  PubMed  Google Scholar 

  163. Thornton, K. R., Jensen, J. D., Becquet, C. & Andolfatto, P. Progress and prospects in mapping recent selection in the genome. Heredity 98, 340–348 (2007).

    CAS  PubMed  Google Scholar 

  164. Weir, C. L. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  165. Hartl, D. L. & Clark, A. G. Principles of Population Genetics (Sinauer Associates Inc., Sunderland, 2007).

    Google Scholar 

  166. Phillips, P. C. Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev. Genet. 9, 855–867 (2008).

    CAS  PubMed  Google Scholar 

  167. Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20, 217–251 (2002).

    CAS  PubMed  Google Scholar 

  168. Rajagopalan, S. & Long, E. O. Understanding how combinations of HLA and KIR genes influence disease. J. Exp. Med. 201, 1025–1029 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Norman, P. J. et al. Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans. Nature Genet. 39, 1092–1099 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Abel, M. Ben-Ali, J. L. Casanova, Y. Gilad, B. Jabri, O. Neyrolles, E. Patin, G. Perry, M. Przeworski, H. Quach and P. Sansonetti for helpful comments and discussions, and J. Akey, M. Carrington and R. Single for sharing data that helped the writing of this Review. L.B.B. is supported by a Human Frontier Science Program postdoctoral fellowship. This work was supported by the Institut Pasteur, the Centre National de la Recherche Scientifique, the Fondation pour la Recherche Médicale, and an Agence Nationale de la Recherche research grant (ANR-08-MIEN-009-01) to L.Q.-M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluís Quintana-Murci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

List of immunity-related genes reported to be rapidly evolving in the human-lineage, in the chimpanzee-lineage, or in both. (XLS 58 kb)

Supplementary Table 2

List of immunity-related genes presenting signatures of recent positive selection as revealed by at least one genome-wide scan for selection. (XLS 118 kb)

Supplementary information

Supplementary Note (PDF 266 kb)

Related links

Related links

FURTHER INFORMATION

Lluís Quintana-Murci's laboratory

1000 Genomes Project

Haplotter genome browser

Human Genome Diversity Project selection browser

Innate Immunity Program in Genomics Applications

International HapMap Project

National Human Genome Research Institute catalogue of published GWA studies

National Institute of Environmental Health Sciences Environmental Genome Project

SeattleSNPs database

Glossary

Innate immunity

Non-specific and evolutionarily ancient mechanisms that form the first line of host defence against infection. Innate immunity, which is inborn and does not involve memory, provides immediate defence and is found in all classes of plants and animals.

Adaptive immunity

A highly adaptable and specific immune response that can adjust to new pathogens (structures) and that retains a memory of prior exposure to them. Thought to have arisen in jawed vertebrates, the adaptive immune system is stimulated by the innate immune system.

McDonald–Kreitman test

The McDonald–Kreitman test compares the ratio of polymorphism (within-species variation) to divergence (between-species variation) at non-synonymous and synonymous sites.

Gene Ontology

A widely used classification system of gene functions and other gene attributes that uses a controlled vocabulary. The ontology covers three domains; cellular components, molecular functions and biological processes.

Simian immunodeficiency virus

A type of retrovirus found in African non-human primates. Unlike HIV infections in humans, simian immunodeficiency virus infections in their natural hosts are usually non-pathogenic.

Copy-number variation

A class of DNA sequence variant (including deletions and duplications) in which the result is a departure from the expected diploid representation of DNA sequence.

Erythrocyte

A cell that contains haemoglobin and that can carry oxygen to the body. They are also known as red blood cells.

Antigen

Any substance that the immune system can respond to by producing antibodies.

Linkage disequilibrium

The non-random association of alleles at two or more loci. The pattern of linkage disequilibrium in a genomic region is affected by mutation, recombination, genetic drift, natural selection and demographic history.

Genetic hitchhiking

The process by which a neutral, or in some cases deleterious, mutation may increase in population frequency owing to linkage with a positively selected mutation.

Outlier approaches

Popular approaches for detecting selection that identify loci that present extreme values for a given statistic from empirical genome-wide genetic data. It is assumed that these 'outlier loci' are enriched for loci targeted by selection.

Interleukins

A group of secreted proteins that are produced by immune cells and that can modulate immune and inflammatory responses.

Fixation

The increase in the frequency of a genetic variant in a population to 100%.

Haplotype

The allelic composition over a contiguous chromosome stretch.

Complement pathway

The complement system is a complex protein cascade that is involved in both innate and adaptive immunity. Three pathways activate the complement system: the classical pathway, the alternative pathway and the lectin pathway.

Ficolins

A group of humoral proteins that contain a collagen-like domain and a fibrinogen-like domain. They can bind carbohydrate molecules on pathogens, apoptotic and necrotic cells to activate the lectin complement pathway.

Caspases

Enzymes that play an important part in the immune system by activating numerous cellular proteins that are involved in apoptosis, necrosis, immunity and inflammation. They are synthesized as inactive procaspases that are later activated by proteolytic cleavage into active caspases.

Fitness

A measure of the capacity of an organism to survive and reproduce.

Leprosy reversal reaction

A syndrome that is characterized by the rapid activation of a T helper 1 inflammatory response to Mycobacterium leprae. This reaction can cause substantial morbidity.

Genome-wide association studies

Studies in which associations between genetic variation and a phenotype or trait of interest are identified by genotyping cases (for example, diseased individuals) and controls (for example, healthy individuals) for a set of genetic variants that capture variation across the entire genome.

Expression quantitative trait loci

Regions of the genome at which genetic allelic variation is associated with variation in gene expression.

Quantitative trait loci

Regions of the genome at which genetic variation is associated with a particular phenotypic characteristic or trait (for example, height, weight or skin colour).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreiro, L., Quintana-Murci, L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11, 17–30 (2010). https://doi.org/10.1038/nrg2698

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2698

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing