Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The future of evo–devo: model systems and evolutionary theory

Abstract

 See more Darwin-related content in our Nature Publishing Group collection.

There has been a recent trend in evolutionary developmental biology (evo–devo) towards using increasing numbers of model species. I argue that, to understand phenotypic change and novelty, researchers who investigate evo–devo in animals should choose a limited number of model organisms in which to develop a sophisticated methodological tool kit for functional investigations. Furthermore, a synthesis of evo–devo with population genetics and evolutionary ecology is needed to meet future challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilkins, A. The Evolution of Developmental Pathways (Sinauer Associates, Sunderland, Massachusetts, 2002).

    Google Scholar 

  2. Rudel, D. & Sommer, R. J. The evolution of developmental mechanisms. Dev. Biol. 264, 15–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Raff, R. The Shape of Life (Chicago Univ. Press, Chicago, 1996).

    Book  Google Scholar 

  4. Gerhard, J. & Kirschner, M. Cells, Embryos and Evolution (Blackwell Science, Oxford, 1997).

    Google Scholar 

  5. Minelli, A. The Development of Animal Form (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  6. Carroll, S. B. Endless Forms Most Beautiful (Norton & Comp., New York, 2005).

    Google Scholar 

  7. Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  8. Jenner, R. J. & Wills, M. A. The choice of model organisms in evo–devo. Nature Rev. Genet. 8, 311–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Rieppel, O. Development, essentialism, and population thinking. Evol. Dev. 10, 504–507 (2008).

    Article  Google Scholar 

  10. Lynch, M. The Origin of Genome Architecture (Sinauer Associates, Sunderland Massachusetts, 2007).

    Google Scholar 

  11. Akam, M., Holland, P., Ingham, P. & Wray, G. (eds) The Evolution of Developmental Mechanisms. Development Supplement (The Company of Biologists, Cambridge, 1994).

    Google Scholar 

  12. Roth, S. & Hartenstein, V. Development of Tribolium castaneum. Dev. Genes Evol. 218, 115–118 (2008).

    Article  PubMed  Google Scholar 

  13. Lynch, J. A., Brent, A. E., Leaf, D. S., Pultz, M. A. & Desplan, C. Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 439, 728–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hong, R. L. & Sommer, R. J. Pristionchus pacificus: a well-rounded nematode. BioEssays, 28, 651–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Cooke, J., Nowak, M. A., Boerlijst, M. & Maynard-Smith, J. Evolutionary origin and maintenance of redundant gene expression during metazoan development. Trends Genet. 13, 360–364 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Dieterich, C. et al. The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nature Genet. 40, 1193–1198 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Schlager, B. et al. Molecular cloning of a dominant Roller mutant and establishment of DNA-mediated transformation in the nematode model Pristionchus pacificus. Genesis (in the press).

  19. Sternberg, P. W. Vulva development. Wormbook [online], 25 Jun 2005 (doi:10.1895/wormbook.1.6.1)., ed.

    Google Scholar 

  20. Sommer, R. J. & Sternberg, P. W. Apoptosis limits the size of the vulval equivalence group in Pristionchus pacificus: a genetic analysis. Curr. Biol. 6, 52–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Schlager, B. et al. HAIRY-like transcription factors and the evolution of the nematode vulva equivalence group. Curr. Biol. 16, 1386–1394 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Tian, H ; Schlager, B., Xiao, H. & Sommer, R. J. Wnt signaling by differentially expressed Wnt ligands induces vulva development in Pristionchus pacificus. Curr. Biol. 18, 142–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949–955 (2008).

  24. Roth, S. in Gastrulation: From cells to embryos (ed. C. Stern) 105–122 (Cold Spring Harbor Laboratory Press, 2004).

    Google Scholar 

  25. Rushlow, C. & Levine, M. Role of the zerknüllt gene in dorsal-ventral pattern formation in Drosophila. Adv. Genet. 27, 277–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. van der Zee, M., Berns, N. & Roth, S. Distinct functions of the Tribolium zerknüllt genes in serosa specification and dorsal closure. Curr. Biol. 15, 624–636 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. & Levine, M. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111, 687–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. da Fonseca, R. N. et al. Self-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum. Dev. Cell 14, 605–615 (2008).

    Article  Google Scholar 

  29. Wagner, G. The developmental genetics of homology. Nature Rev. Genet. 8, 473–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Sommer, R. J. Homology and the hierarchy of biological systems. BioEssays, 30, 653–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. de Beer, G. R. Embryos and Ancestors (Claredon Press, Oxford, 1958).

    Google Scholar 

  32. de Beer, G. R. Homology: An Unsolved Problem (Oxford Univ. Press, Oxford, 1971).

    Google Scholar 

  33. Behringer, R. et al. (eds) Emerging Model Organisms. A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2009).

    Google Scholar 

  34. Reddien, P. W. & Sanchez, Alvarado, A. Fundamentals of planarian regeneration. Annu. Rev. Cell Dev. Biol. 20, 725–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Tiozzo, S., Brown, F. D. & De Tomaso, A. W. in Stem Cells From Hydra to Man (ed. Thomas Bosch) 95–112 (Springer, Heidelberg, 2008).

    Google Scholar 

  36. Amundson, R. The Changing Role of the Embryo in Evolutionary Thought (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  37. Dobzhansky, T. Evolution, Genetics and Man (Wiley, New York, 1955).

    Google Scholar 

  38. Mayr, E. Animal Species and Evolution (Harvard Univ. Press, Cambridge, Massachusetts, 1966).

    Google Scholar 

  39. Kimura, M. The Neutral Theory of Molecular Evolution. (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  40. Zauner, H. & Sommer, R. J. in Evolving pathways: Key Themes in Evolutionary Developmental Biology (eds Minelli, A. & Fusco, g.). 151–171 (Cambridge Univ. Press, Cambridge, 2008).

    Google Scholar 

  41. Zauner, H. & Sommer, R. J. Evolution of robustness in the signaling network of Pristionchus vulva development. Proc. Natl Acad Sci. USA 104, 10086–10091 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Milloz, J., Duveau, F., Nuez, I. & Felix, M.-A. Intraspecific evolution of the intercellular network underlying a robust developmental system. Genes Dev. 22, 3064–3075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palopoli, M. F. et al. Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans. Nature 454, 1019–10222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reddy, K. C., Andersen, E. C., Kruglyak, L. & Kim, D. H. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nordborg, M. & Weigel, D. Next-generation genetics in plants. Nature 456, 720–723 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Gilbert, S. F. & Bolker, J. A. Ecological developmental biology: preface to the symposium. Evol. Dev. 5, 3–8 (2003).

    Article  PubMed  Google Scholar 

  47. Herrmann, M., Mayer, E. W. & Sommer, R. J. Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in western Europe. Zoology 109, 96–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Herrmann, M. et al. The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the Oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zool. Sci. 24, 883–889 (2007).

    Article  CAS  Google Scholar 

  49. Sokoloff, A. The Biology of Tribolium (Oxford Clarendon, Oxford, 1972).

    Google Scholar 

  50. Hong, R. L., Svatos, A., Herrmann, M. & Sommer, R. J. The species-specific recognition of beetle cues by Pristionchus maupasi. Evol. Dev. 10, 273–279 (2008).

    Article  PubMed  Google Scholar 

  51. Hong, R. L., Witte, H. & Sommer, R. J. Natural variation in P. pacificus insect pheromone attraction involves the protein kinase EGL-4. Proc. Natl Acad. Sci. USA 105, 7779–7784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jackowska, M. et al. Genomic and gene regulatory signatures of cryptozoic adaptation: loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front. Zool. 4, 24 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Darling, J. et al. Rising starlet: the starlet sea anemone Nematostella vectensis. BioEssays 27, 211–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Jeffery, W. R. Cavefish as model system in evolutionary developmental biology. Dev. Biol. 231, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Pigliucci, M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol. Evol. 20, 481–486 (2005).

    Article  PubMed  Google Scholar 

  56. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  57. Saenko, S. V., French, V., Brakefield, P. M. & Beldade, P. Conserved developmental processes and the formation of evolutionary novelties: examples from butterfly wings. Philos. Trans. R. Soc. Lond., B 363, 1549–1555 (2008).

    Article  Google Scholar 

  58. Laforsch, C. & Tollrian, R. Embryological aspects of inducible morphological defense in Daphnia. J. Morph. 262, 701–707 (2004).

    Article  PubMed  Google Scholar 

  59. Abouheif, E. & Wray, G. Evolution of the gene network underlying wing polymorphism in ants. Science 297, 249–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Van Valen, L. Festschrift. Science 180, 488 (1973).

    Google Scholar 

  61. Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61, 995–1016 (2007).

    Article  PubMed  Google Scholar 

  62. Lynch, M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl Acad Sci. USA 104, 8597–8604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hill, R. C. et al. Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis hermaphrodites. Dev. Cell 10, 531–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2005).

    Article  Google Scholar 

  65. Corley, S. B., Carpenter, R., Copsey, L. & Coen, E. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc. Natl Acad Sci. USA 102, 5068–5073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank S. Roth, F. Brown, M. Riebesell and three anonymous reviewers for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome

Caenorhabditis elegans

Drosophila melanogaster

Nasonia vitripennis

Nematostella vectensis

Pristionchus pacificus

Tribolium castaneum

FURTHER INFORMATION

Ralf Sommer's homepage

Max Plank Institute for Developmental Biology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, R. The future of evo–devo: model systems and evolutionary theory. Nat Rev Genet 10, 416–422 (2009). https://doi.org/10.1038/nrg2567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing