Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thyroid cancer stem cells

Abstract

Thyroid cancer is the most frequently diagnosed endocrine cancer and causes more deaths than all other endocrine cancers combined. Research findings support the concept that a subpopulation of thyroid cancer cells displays properties characteristic of stem cells. These putative cancer-forming entities drive tumorigenesis as a result of their dual ability to undergo self-renewal and to differentiate into various types of cancer cells; they also mediate metastasis and are resistant to the effects of chemotherapy and radiation therapy. This Review discusses the cellular origin of thyroid cancer and the properties of the thyroid cancer stem cell niche. The article critically evaluates the methods used to identify molecular markers expressed by thyroid-cancer-initiating cells and outlines prospective therapeutic strategies to directly target these cells. Stem-cell technology offers an unprecedented opportunity to investigate these crucial cancer stem cell populations and to advance understanding of the molecular mechanisms that control disease processes. Such knowledge could potentially lead to the development of more effective and safer treatment regimens for late-stage thyroid cancer than are currently available.

Key Points

  • The multistep carcinogenesis model suggests that well-differentiated thyroid cancer cells can transform into undifferentiated thyroid cancer cells

  • The fetal cell carcinogenesis model postulates that thyroid cancer cells are derived from remnants of fetal thyroid cells rather than from mature thyroid follicular cells

  • The cancer stem cell model predicts that a small subset of cancer cells has the ability to self-renew and to produce progenitor cells that reconstitute and sustain tumor growth

  • Cancer stem cells have been detected in several forms of thyroid cancer through the use of antigenic markers and exploitation of in vitro and in vivo stem-cell assays

  • Thyroid cancer stem cells initiate tumorigenesis, mediate metastasis and confer resistance to the currently available regimens of chemotherapy and radiation therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of thyroid cancer development.
Figure 2: In vivo strategy to identify thyroid cancer stem cells.
Figure 3: Influence of the cancer stem cell model on thyroid cancer treatments.

Similar content being viewed by others

References

  1. Davies, L. & Welch, H. G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295, 2164–2167 (2006).

    Article  CAS  Google Scholar 

  2. American Cancer Society. Cancer Facts & Figures 2010. American Cancer Society [online], (2010).

  3. Takano, T. & Amino, N. Fetal cell carcinogenesis: a new hypothesis for better understanding of thyroid carcinoma. Thyroid 15, 432–438 (2005).

    Article  Google Scholar 

  4. Todaro, M. et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 70, 8874–8885 (2010).

    Article  CAS  Google Scholar 

  5. Pitman, K. T., Johnson, J. T. & Myers, E. N. Papillary thyroid carcinoma associated with squamous cell carcinoma of the head and neck: significance and treatment. Am. J. Otolaryngol. 17, 190–196 (1996).

    Article  CAS  Google Scholar 

  6. Randolph, G. W., Thompson, G. B., Branovan, D. I. & Tuttle, R. M. Treatment of thyroid cancer: 2007—a basic review. Int. J. Radiat. Oncol. Biol. Phys. 69, S92–S97 (2007).

    Article  Google Scholar 

  7. Vasko, V., Bauer, A. J., Tuttle, R. M. & Francis, G. L. Papillary and follicular thyroid cancers in children. Endocr. Dev. 10, 140–172 (2007).

    Article  Google Scholar 

  8. Caron, N. R. & Clark, O. H. Papillary thyroid cancer. Curr. Treat. Options Oncol. 7, 309–319 (2006).

    Article  Google Scholar 

  9. Emerick, G. T., Duh, Q. Y., Siperstein, A. E., Burrow, G. N. & Clark, O. H. Diagnosis, treatment, and outcome of follicular thyroid carcinoma. Cancer 72, 3287–3295 (1993).

    Article  CAS  Google Scholar 

  10. Simpson, W. J. et al. Papillary and follicular thyroid cancer. Prognostic factors in 1,578 patients. Am. J. Med. 83, 479–488 (1987).

    Article  CAS  Google Scholar 

  11. de Groot, J. W. et al. Determinants of life expectancy in medullary thyroid cancer: age does not matter. Clin. Endocrinol. (Oxf.) 65, 729–736 (2006).

    Article  Google Scholar 

  12. Takahashi, C. & Ewen, M. E. Genetic interaction between Rb and N-ras: differentiation control and metastasis. Cancer Res. 66, 9345–9348 (2006).

    Article  CAS  Google Scholar 

  13. Al-Rawi, M. & Wheeler, M. H. Medullary thyroid carcinoma--update and present management controversies. Ann. R. Coll. Surg. Engl. 88, 433–438 (2006).

    Article  Google Scholar 

  14. Simpson, W. J. Anaplastic thyroid carcinoma: a new approach. Can. J. Surg. 23, 25–27 (1980).

    CAS  PubMed  Google Scholar 

  15. Tan, R. K. et al. Anaplastic carcinoma of the thyroid: a 24-year experience. Head Neck 17, 41–48 (1995).

    Article  CAS  Google Scholar 

  16. Staunton, M. D. Thyroid cancer: a multivariate analysis on influence of treatment on long-term survival. Eur. J. Surg. Oncol. 20, 613–621 (1994).

    CAS  PubMed  Google Scholar 

  17. Ain, K. B. Anaplastic thyroid carcinoma: a therapeutic challenge. Semin. Surg. Oncol. 16, 64–69 (1999).

    Article  CAS  Google Scholar 

  18. Kondo, T., Ezzat, S. & Asa, S. L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer 6, 292–306 (2006).

    Article  CAS  Google Scholar 

  19. Venkatesh, Y. S. et al. Anaplastic carcinoma of the thyroid. A clinicopathologic study of 121 cases. Cancer 66, 321–330 (1990).

    Article  CAS  Google Scholar 

  20. McIver, B. et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery 130, 1028–1034 (2001).

    Article  CAS  Google Scholar 

  21. Dumont, J. E., Lamy, F., Roger, P. & Maenhaut, C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol. Rev. 72, 667–697 (1992).

    Article  CAS  Google Scholar 

  22. Nikiforova, M. N. et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett. 209, 1–6 (2004).

    Article  CAS  Google Scholar 

  23. Takano, T. Fetal cell carcinogenesis of the thyroid: theory and practice. Semin. Cancer Biol. 17, 233–240 (2007).

    Article  CAS  Google Scholar 

  24. Nikiforov, Y. & Gnepp, D. R. Pediatric thyroid cancer after the Chernobyl disaster. Pathomorphologic study of 84 cases (1991–1992) from the Republic of Belarus. Cancer 74, 748–766 (1994).

    Article  CAS  Google Scholar 

  25. Jhiang, S. M. et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137, 375–378 (1996).

    Article  CAS  Google Scholar 

  26. Portella, G. et al. Human N-ras, TRK-T1, and RET/PTC3 oncogenes, driven by a thyroglobulin promoter, differently affect the expression of differentiation markers and the proliferation of thyroid epithelial cells. Oncol. Res. 11, 421–427 (1999).

    CAS  PubMed  Google Scholar 

  27. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    Article  CAS  Google Scholar 

  28. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    CAS  PubMed  Google Scholar 

  29. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    Article  CAS  Google Scholar 

  30. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  31. Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).

    Article  CAS  Google Scholar 

  32. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  33. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    CAS  Google Scholar 

  34. Monzani, E. et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur. J. Cancer 43, 935–946 (2007).

    Article  CAS  Google Scholar 

  35. Klein, W. M. et al. Increased expression of stem cell markers in malignant melanoma. Mod. Pathol. 20, 102–107 (2007).

    Article  CAS  Google Scholar 

  36. Dou, J. et al. Isolation and identification of cancer stem-like cells from murine melanoma cell lines. Cell. Mol. Immunol. 4, 467–472 (2007).

    PubMed  Google Scholar 

  37. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  Google Scholar 

  38. Schatton, T. et al. Identification of cells initiating melanomas. Nature 451, 345–349 (2008).

    Article  CAS  Google Scholar 

  39. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  Google Scholar 

  40. Shu, Q. et al. Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26, 1414–1424 (2008).

    Article  Google Scholar 

  41. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  Google Scholar 

  42. Miki, J. et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 67, 3153–3161 (2007).

    Article  CAS  Google Scholar 

  43. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007).

    Article  CAS  Google Scholar 

  44. Beier, D. et al. CD133(+) and CD133(–) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67, 4010–4015 (2007).

    Article  CAS  Google Scholar 

  45. Zito, G. et al. In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS ONE 3, e3544 (2008).

    Article  Google Scholar 

  46. Friedman, S., Lu, M., Schultz, A., Thomas, D. & Lin, R. Y. CD133+ anaplastic thyroid cancer cells initiate tumors in immunodeficient mice and are regulated by thyrotropin. PLoS ONE 4, e5395 (2009).

    Article  Google Scholar 

  47. Schweppe, R. E. et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J. Clin. Endocrinol. Metab. 93, 4331–4341 (2008).

    Article  CAS  Google Scholar 

  48. Hoshi, N., Kusakabe, T., Taylor, B. J. & Kimura, S. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology 148, 4251–4258 (2007).

    Article  CAS  Google Scholar 

  49. Lan, L., Cui, D., Nowka, K. & Derwahl, M. Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require TSH for differentiation into thyrocytes. J. Clin. Endocrinol. Metab. 92, 3681–3688 (2007).

    Article  CAS  Google Scholar 

  50. Mitsutake, N. et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148, 1797–1803 (2007).

    Article  CAS  Google Scholar 

  51. Sullivan, P. et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res. 70, 9937–9948 (2010).

    Article  CAS  Google Scholar 

  52. Croker, A. K. et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J. Cell. Mol. Med. 13, 2236–2252 (2009).

    Article  Google Scholar 

  53. Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133 metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111–2120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Malaguarnera, R. et al. Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J. Clin. Endocrinol. Metab. 96, 766–774 (2011).

    Article  CAS  Google Scholar 

  55. Derwahl, M. Linking stem cells to thyroid cancer. J. Clin. Endocrinol. Metab. 96, 610–613 (2011).

    Article  CAS  Google Scholar 

  56. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315–1321 (2007).

    Article  CAS  Google Scholar 

  57. Zheng, X., Cui, D., Xu, S., Brabant, G. & Derwahl, M. Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells. Int. J. Oncol. 37, 307–315 (2010).

    Article  CAS  Google Scholar 

  58. Beier, D. et al. CD133 Expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathol. 18, 370–377 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, RY. Thyroid cancer stem cells. Nat Rev Endocrinol 7, 609–616 (2011). https://doi.org/10.1038/nrendo.2011.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.127

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer