Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leukotriene modifiers as potential therapeutics for cardiovascular disease

Key Points

  • 5-Lipoxygenase (5-LO) catalyses the formation of leukotrienes from arachidonic acid in inflammatory cells.

  • Leukotriene B4 is a potent neutrophil chemoattractant and the cysteinyl leukotrienes are mediators of vascular permeability, bronchoconstriction and anaphylactic reactions. They bind to BLT1/BLT2 and CysLT1/CysLT2 receptors, respectively.

  • Leukotrienes have been a prime target in asthma and drugs were developed — known as leukotriene modifiers — that block airway inflammation and bronchoconstriction. The drugs that are currently used block 5-LO and the CysLT1 receptor.

  • Recently, much attention has turned towards the potential roles of the 5-LO pathway in promoting inflammation in cardiovascular disease, including atherosclerosis and aortic aneurysms from both human and mouse studies.

  • The precise functions of the leukotrienes in cardiovascular disease are being evaluated and based on genetic studies a clinical trial has been initiated to evaluate the efficacy of a 5-LO-activating protein inhibitor in the secondary prevention of myocardial infarction.

Abstract

Owing to their anti-inflammatory properties, leukotriene modifiers have been the primary therapeutics in asthma management for several years. Although blocking the inflammatory component of human disease is a long-standing and established concept, the use of leukotriene modifiers in treating the inflammatory component of cardiovascular disease encompassing atherosclerosis, myocardial infarction, stroke and aortic aneurysm has, surprisingly, only been seriously contemplated in the past few years. As reviewed here, several exciting studies have recently contributed to this expanding area of interest, and so far one leukotriene modifier has entered Phase II clinical trials to assess its potential for reducing the risk of heart attacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leukotriene biosynthetic cascade.
Figure 2: Various members of the three classes of leukotriene-modifier drugs.
Figure 3: Genetic variants in the 5-lipoxygenase/leukotriene pathway.
Figure 4: Model for 5-lipoxygenase/leukotriene pathway involvement in aortic aneurysm and adventitial inflammation pathogenesis.

Similar content being viewed by others

References

  1. Samuelsson, B. Leukotrienes: mediators of immediate hypersensitivity actions and inflammation. Science 220, 568–575 (1983). The first definitive review on the subject of leukotrienes.

    CAS  PubMed  Google Scholar 

  2. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001). An important follow-up review on the subject of leukotrienes and prostaglandins.

    CAS  PubMed  Google Scholar 

  3. Lewis, R. A., Austen, K. F. & Soberman, R. J. Leukotrienes and other products of 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323, 645–655 (1990).

    CAS  PubMed  Google Scholar 

  4. Henderson, W. R. Jr., The role of leukotrienes in inflammation. Ann. Intern. Med. 121, 684–697 (1994).

    CAS  PubMed  Google Scholar 

  5. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimizu, T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624 (1997).

    CAS  PubMed  Google Scholar 

  6. Yokomizo, T., Kato, K., Terawaki, K., Izumi, T. & Shimizu, T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J. Exp. Med. 192, 421–432 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lynch, K. R. et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399, 789–793 (1999).

    CAS  PubMed  Google Scholar 

  8. Heise, C. E. et al. Characterization of the human cysteinyl leukotriene 2 receptor. J. Biol. Chem. 275, 30531–30536 (2000).

    CAS  PubMed  Google Scholar 

  9. Dixon, R. A. et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343, 282–284 (1990).

    CAS  PubMed  Google Scholar 

  10. Miller, D. K. et al. Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343, 278–281 (1990). A marvelous study of drug–protein interaction revealing a novel concept in leukotriene inhibition.

    CAS  PubMed  Google Scholar 

  11. Radmark, O., Shimizu, T., Jornvall, H. & Samuelsson, B. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J. Biol. Chem. 259, 12339–12345 (1984).

    CAS  PubMed  Google Scholar 

  12. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E. & Smith, M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286, 264–265 (1980).

    CAS  PubMed  Google Scholar 

  13. Gimbrone, M. A. Jr, Brock, A. F. & Schafer, A. I. Leukotriene B4 stimulates polymorphonuclear leukocyte adhesion to cultured vascular endothelial cells. J. Clin. Invest. 74, 1552–1555 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodarzi, K., Goodarzi, M., Tager, A. M., Luster, A. D. & von Andrian, U. H. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nature Immunol. 4, 965–973 (2003).

    CAS  Google Scholar 

  15. Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P. & Swanson, B. J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4 . Nature Immunol. 4, 974–981 (2003).

    CAS  Google Scholar 

  16. Tager, A. M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nature Immunol. 4, 982–990 (2003).

    CAS  Google Scholar 

  17. Murphy, R. C., Hammarstrom, S. & Samuelsson, B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc. Natl Acad. Sci. USA 76, 4275–4279 (1979). The start of a new era defining biological activity of leukotrienes in allergic inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dahlen, S. E. et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc. Natl Acad. Sci. USA 78, 3887–3891 (1981). A detailed look at the biological activities of leukotrienes.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dahlen, S. E., Hedqvist, P., Hammarstrom, S. & Samuelsson, B. Leukotrienes are potent constrictors of human bronchi. Nature 288, 484–486 (1980). The start of a new era defining biological activity of leukotrienes in allergic inflammation.

    CAS  PubMed  Google Scholar 

  20. Lam, B. K., Gagnon, L., Austen, K. F. & Soberman, R. J. The mechanism of leukotriene B4 export from human polymorphonuclear leukocytes. J. Biol. Chem. 265, 13438–13441 (1990).

    CAS  PubMed  Google Scholar 

  21. Leier, I. et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. 269, 27807–27810 (1994).

    CAS  PubMed  Google Scholar 

  22. Robbiani, D. F. et al. The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103, 757–768 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Marcus, A. J. Transcellular metabolism of eicosanoids. Prog. Hemost. Thromb. 8, 127–142 (1986).

    CAS  PubMed  Google Scholar 

  24. Maclouf, J., Murphy, R. C. & Henson, P. M. Transcellular sulfidopeptide leukotriene biosynthetic capacity of vascular cells. Blood 74, 703–707 (1989).

    CAS  PubMed  Google Scholar 

  25. DiPersio, J. F., Billing, P., Williams, R. & Gasson, J. C. Human granulocyte-macrophage colony-stimulating factor and other cytokines prime human neutrophils for enhanced arachidonic acid release and leukotriene B4 synthesis. J. Immunol. 140, 4315–4322 (1988).

    CAS  PubMed  Google Scholar 

  26. Razin, E., Mencia-Huerta, J. M., Lewis, R. A., Corey, E. J. & Austen, K. F. Generation of leukotriene C4 from a subclass of mast cells differentiated in vitro from mouse bone marrow. Proc. Natl Acad. Sci. USA 79, 4665–4667 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brocklehurst, W. E. The release of histamine and formation of a slow-reacting substance (SRS-A) during anaphylactic shock. J. Physiol. 151, 416–435 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adams, G. K. 3rd & Lichtenstein, L. In vitro studies of antigen-induced bronchospasm: effect of antihistamine and SRS-A antagonist on response of sensitized guinea pig and human airways to antigen. J. Immunol. 122, 555–562 (1979).

    CAS  PubMed  Google Scholar 

  29. Kay, A. B. Mediators of hypersensitivity and inflammatory cells in the pathogenesis of bronchial asthma. Eur. J. Respir. Dis. Suppl. 129, 1–44 (1983).

    CAS  PubMed  Google Scholar 

  30. Hui, K. P. et al. Effect of a 5-lipoxygenase inhibitor on leukotriene generation and airway responses after allergen challenge in asthmatic patients. Thorax 46, 184–189 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barnes, N. C. & Smith, L. J. Biochemistry and physiology of the leukotrienes. Clin. Rev. Allergy Immunol. 17, 27–42 (1999).

    CAS  PubMed  Google Scholar 

  32. Henderson, W. R. Jr. et al. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am. J. Respir. Crit. Care Med. 165, 108–116 (2002).

    PubMed  Google Scholar 

  33. O'Byrne, P. M., Israel, E. & Drazen, J. M. Antileukotrienes in the treatment of asthma. Ann. Intern. Med. 127, 472–480 (1997). A review of this novel class of drugs as they emerged into clinical practise.

    CAS  PubMed  Google Scholar 

  34. Hallstrand, T. S. & Henderson, W. R. Jr. Leukotriene modifiers. Med. Clin. North Am. 86, 1009–1033 (2002).

    CAS  PubMed  Google Scholar 

  35. Spanbroek, R. et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc. Natl Acad. Sci. USA 100, 1238–1243 (2003). An important first stepping-stone to examination of the leukotriene pathway in CVD.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dwyer, J. H. et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med. 350, 29–37 (2004). A provocative genetic study implicating the 5-LO pathway in CVD.

    CAS  PubMed  Google Scholar 

  37. Helgadottir, A. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature Genet. 36, 233–239 (2004). A key genetic study with high-stakes ramifications if verified in other populations.

    CAS  PubMed  Google Scholar 

  38. Rouzer, C. A. & Samuelsson, B. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc. Natl Acad. Sci. USA 82, 6040–6044 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Knapp, H. R. Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. N. Engl. J. Med. 323, 1745–1748 (1990).

    CAS  PubMed  Google Scholar 

  40. Israel, E. et al. The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air. N. Engl. J. Med. 323, 1740–1744 (1990).

    CAS  PubMed  Google Scholar 

  41. Bell, R. L. et al. The discovery and development of zileuton: an orally active 5-lipoxygenase inhibitor. Int. J. Immunopharmacol. 14, 505–510 (1992).

    CAS  PubMed  Google Scholar 

  42. Ashida, Y. et al. Pharmacological profile of AA-861, a 5-lipoxygenase inhibitor. Prostaglandins 26, 955–972 (1983).

    CAS  PubMed  Google Scholar 

  43. Wenzel, S. E. & Kamada, A. K. Zileuton: the first 5-lipoxygenase inhibitor for the treatment of asthma. Ann. Pharmacother. 30, 858–864 (1996).

    CAS  PubMed  Google Scholar 

  44. Kees, K. L., Musser, J. H., Chang, J., Skowronek, M. & Lewis, A. J. Synthesis and antiallergic activity of a novel series of 5-lipoxygenase inhibitors. J. Med. Chem. 29, 2329–2334 (1986).

    CAS  PubMed  Google Scholar 

  45. Reid, J. J. ABT-761 (Abbott). Curr. Opin. Investig. Drugs 2, 68–71 (2001).

    CAS  PubMed  Google Scholar 

  46. Critical Therapeutics Inc. Zileuton (Zyflo) product information. [online], <http://www.criticaltherapeutics.com/zileuton.html> (2004).

  47. Peters-Golden, M. & Coffey, M. Role of leukotrienes in antimicrobial host defense of the lung. Clin. Rev. Allergy Immunol. 17, 261–269 (1999).

    CAS  PubMed  Google Scholar 

  48. Peters-Golden, M., Canetti, C., Mancuso, P. & Coffey, M. J. Leukotrienes: underappreciated mediators of innate immune responses. J. Immunol. 174, 589–594 (2005).

    CAS  PubMed  Google Scholar 

  49. Bailie, M. B. et al. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J. Immunol. 157, 5221–5224 (1996).

    CAS  PubMed  Google Scholar 

  50. Gillard, J. et al. L-663, 536 (MK-886) (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2, 2- dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can. J. Physiol. Pharmacol. 67, 456–464 (1989).

    CAS  PubMed  Google Scholar 

  51. Evans, J. F. et al. 5-Lipoxygenase-activating protein is the target of a quinoline class of leukotriene synthesis inhibitors. Mol. Pharmacol. 40, 22–27 (1991).

    CAS  PubMed  Google Scholar 

  52. Prasit, P. et al. A new class of leukotriene biosynthesis inhibitor: the development of MK-0591. J. Lipid Mediat. 6, 239–244 (1993).

    CAS  PubMed  Google Scholar 

  53. Diamant, Z. et al. The effect of MK-0591, a novel 5-lipoxygenase activating protein inhibitor, on leukotriene biosynthesis and allergen-induced airway responses in asthmatic subjects in vivo. J. Allergy Clin. Immunol. 95, 42–51 (1995).

    CAS  PubMed  Google Scholar 

  54. Muller-Peddinghaus, R. et al. BAY X1005, a new selective inhibitor of leukotriene synthesis: pharmacology and pharmacokinetics. J. Lipid Mediat. 6, 245–248 (1993).

    CAS  PubMed  Google Scholar 

  55. Muller-Peddinghaus, R. Potential anti-inflammatory effects of 5-lipoxygenase inhibition — exemplified by the leukotriene synthesis inhibitor BAY X 1005. J. Physiol. Pharmacol. 48, 529–536 (1997).

    CAS  PubMed  Google Scholar 

  56. Keam, S. J., Lyseng-Williamson, K. A. & Goa, K. L. Pranlukast. A review of its use in the management of asthma. Drugs 63, 991–1019 (2003).

    CAS  PubMed  Google Scholar 

  57. Barnes, N. C. & Pujet, J. C. Pranlukast, a novel leukotriene receptor antagonist: results of the first European, placebo controlled, multicentre clinical study in asthma. Thorax 52, 523–527 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Grayson, M. H. & Korenblat, P. E. The emerging role of leukotriene modifiers in allergic rhinitis. Am. J. Respir. Med. 2, 441–450 (2003).

    CAS  PubMed  Google Scholar 

  59. FDA approves zafirlukast, first of new type of asthma drug. Am. J. Health Syst. Pharm. 53, 2778 (1996).

  60. AstraZeneca Pharmaceuticals LP. Zafirkulast (Accolate) product information. [online], <http://www.accolateinfo.com/accolate/accolate.asp> (2001).

  61. Leff, J. A. et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N. Engl. J. Med. 339, 147–152 (1998).

    CAS  PubMed  Google Scholar 

  62. Merck & Co., Inc. Montelukast sodium (Singulair) product information. [online], <http://www.singulair.com/montelukast_sodium/singulair/consumer/index.jsp> (2005).

  63. Goetzl, E. J., Payan, D. G. & Goldman, D. W. Immunopathogenetic roles of leukotrienes in human diseases. J. Clin. Immunol. 4, 79–84 (1984).

    CAS  PubMed  Google Scholar 

  64. Ford-Hutchinson, A. W. Leukotriene involvement in pathologic processes. J. Allergy Clin. Immunol. 74, 437–440 (1984).

    CAS  PubMed  Google Scholar 

  65. Rask-Madsen, J., Bukhave, K., Laursen, L. S. & Lauritsen, K. 5-Lipoxygenase inhibitors for the treatment of inflammatory bowel disease. Agents Actions Spec No C37–C46 (1992).

  66. Showell, H. J. et al. The in vitro and in vivo pharmacologic activity of the potent and selective leukotriene B4 receptor antagonist CP-105696. J. Pharmacol. Exp. Ther. 273, 176–184 (1995).

    CAS  PubMed  Google Scholar 

  67. Roberts, W. G. et al. Leukotrienes in ulcerative colitis: results of a multicenter trial of a leukotriene biosynthesis inhibitor, MK-591. Gastroenterology 112, 725–732 (1997).

    CAS  PubMed  Google Scholar 

  68. Steinhilber, D. 5-Lipoxygenase: a target for antiinflammatory drugs revisited. Curr. Med. Chem. 6, 71–85 (1999).

    CAS  PubMed  Google Scholar 

  69. van de Kerkhof, P. C., van Pelt, H., Lucker, G. P., Steijlen, P. M. & Heremans, A. Topical R-85355, a potent and selective 5-lipoxygenase inhibitor, fails to improve psoriasis. Skin Pharmacol. 9, 307–311 (1996).

    CAS  PubMed  Google Scholar 

  70. Drazen, J. M. et al. Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proc. Natl Acad. Sci. USA 77, 4354–4358 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Smedegard, G. et al. Leukotriene C4 affects pulmonary and cardiovascular dynamics in monkey. Nature 295, 327–329 (1982).

    CAS  PubMed  Google Scholar 

  72. Michelassi, F. et al. Leukotriene D4: a potent coronary artery vasoconstrictor associated with impaired ventricular contraction. Science 217, 841–843 (1982).

    CAS  PubMed  Google Scholar 

  73. Feuerstein, G. Leukotrienes and the cardiovascular system. Prostaglandins 27, 781–802 (1984).

    CAS  PubMed  Google Scholar 

  74. Letts, L. G. Leukotrienes: role in cardiovascular physiology. Cardiovasc. Clin. 18, 101–113 (1987).

    CAS  PubMed  Google Scholar 

  75. Spanbroek, R. & Habenicht, A. J. The potential role of antileukotriene drugs in atherosclerosis. Drug News Perspect. 16, 485–489 (2003).

    CAS  PubMed  Google Scholar 

  76. Yla-Herttuala, S. et al. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J. Clin. Invest. 87, 1146–1152 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yla-Herttuala, S. et al. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc. Natl Acad. Sci. USA 87, 6959–6963 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kuhn, H. et al. Involvement of 15-lipoxygenase in early stages of atherogenesis. J. Exp. Med. 179, 1903–1911 (1994).

    CAS  PubMed  Google Scholar 

  79. Folcik, V. A. et al. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J. Clin. Invest. 96, 504–510 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cyrus, T. et al. Disruption of 12/15-lipoxygenase results in inhibition of atherosclerotic lesion development in mice lacking apolipoprotein E. J. Clin. Invest. 103, 1597–1604 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Steinberg, D. At last, direct evidence that lipoxygenases play a role in atherogenesis. J. Clin. Invest. 103, 1487–1488 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cyrus, T. et al. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein E-deficient mice. Circulation 103, 2277–2282 (2001).

    CAS  PubMed  Google Scholar 

  83. George, J. et al. 12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL-receptor deficient mice. Circulation 104, 1646–1650 (2001).

    CAS  PubMed  Google Scholar 

  84. Zhao, L. et al. Selective interleukin-12 synthesis defect in 12/15-lipoxygenase deficient macrophages associated with reduced atherosclerosis in mouse model of familial hypercholesterolemia. J. Biol. Chem. 277, 35350–35356 (2002).

    CAS  PubMed  Google Scholar 

  85. Huo, Y. et al. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation 110, 2024–2031 (2004).

    CAS  PubMed  Google Scholar 

  86. Funk, C. D. et al. Characterization of the human 5-lipoxygenase gene. Proc. Natl Acad. Sci. USA 86, 2587–2591 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kennedy, B. P., Diehl, R. E., Boie, Y., Adam, M. & Dixon, R. A. Gene characterization and promoter analysis of the human 5-lipoxygenase-activating protein (FLAP). J. Biol. Chem. 266, 8511–8516 (1991).

    CAS  PubMed  Google Scholar 

  88. Hoshiko, S., Radmark, O. & Samuelsson, B. Characterization of the human 5-lipoxygenase gene promoter. Proc. Natl Acad. Sci. USA 87, 9073–9077 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. In, K. H. et al. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J. Clin. Invest. 99, 1130–1137 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Silverman, E. S. & Drazen, J. M. Genetic variations in the 5-lipoxygenase core promoter. Description and functional implications. Am. J. Respir. Crit. Care Med. 161, S77–S80 (2000).

    CAS  PubMed  Google Scholar 

  91. Drazen, J. M. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nature Genet. 22, 168–170 (1999).

    CAS  PubMed  Google Scholar 

  92. Silverman, E. S. et al. Egr-1 and Sp1 interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants. Am. J. Respir. Cell Mol. Biol. 19, 316–323 (1998).

    CAS  PubMed  Google Scholar 

  93. Helgadottir, A. et al. Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population. Am. J. Hum. Genet. 76, 505–509 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lohmussaar, E. et al. ALOX5AP gene and the PDE4D gene in a Central European population of stroke patients. Stroke 36, 731–736 (2005).

    CAS  PubMed  Google Scholar 

  95. Mehrabian, M. et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ. Res. 91, 120–126 (2002).

    CAS  PubMed  Google Scholar 

  96. Aiello, R. J. et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler. Thromb. Vasc. Biol. 22, 443–449 (2002).

    CAS  PubMed  Google Scholar 

  97. Zhao, L. et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nature Med. 10, 966–973 (2004). A novel model implicating the leukotriene pathway in aneurysm pathogenesis.

    CAS  PubMed  Google Scholar 

  98. Subbarao, K. et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler. Thromb. Vasc. Biol. 24, 369–375 (2004).

    CAS  PubMed  Google Scholar 

  99. Mehrabian, M. et al. Genetic locus in mice that blocks development of atherosclerosis despite extreme hyperlipidemia. Circ. Res. 89, 125–130 (2001).

    CAS  PubMed  Google Scholar 

  100. Welch, C. L. et al. Localization of atherosclerosis susceptibility loci to chromosomes 4 and 6 using the Ldlr knockout mouse model. Proc. Natl. Acad. Sci. USA. 98, 7946–7951 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuhn, H. et al. Amino acid differences in the deduced 5-lipoxygenase sequence of CAST atherosclerosis-resistance mice confer impaired activity when introduced into the human ortholog. Arterioscler. Thromb. Vasc. Biol. 23, 1072–1076 (2003).

    CAS  PubMed  Google Scholar 

  102. Mehrabian, M. & Allayee, H. 5-lipoxygenase and atherosclerosis. Curr. Opin. Lipidol. 14, 447–457 (2003).

    CAS  PubMed  Google Scholar 

  103. Hakonarson, H. et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction. A randomized trial. JAMA 293, 2245–2256 (2005).

    CAS  PubMed  Google Scholar 

  104. Brennan, M. L. et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med. 349, 1595–1604 (2003).

    CAS  PubMed  Google Scholar 

  105. McDonald, P. P., McColl, S. R., Naccache, P. H. & Borgeat, P. Activation of the human neutrophil 5-lipoxygenase by leukotriene B4 . Br. J. Pharmacol. 107, 226–232 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McDonald, P. P., McColl, S. R., Braquet, P. & Borgeat, P. Autocrine enhancement of leukotriene synthesis by endogenous leukotriene B4 and platelet-activating factor in human neutrophils. Br. J. Pharmacol. 111, 852–860 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Steinberg, D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nature Med. 8, 1211–1217 (2002).

    CAS  PubMed  Google Scholar 

  108. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    CAS  PubMed  Google Scholar 

  109. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    CAS  PubMed  Google Scholar 

  110. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    CAS  PubMed  Google Scholar 

  111. Cipollone, F. et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscl. Thromb. Vasc. Biol. (in the press).

  112. Carry, M. et al. Increased urinary leukotriene excretion in patients with cardiac ischemia. In vivo evidence for 5-lipoxygenase activation. Circulation 85, 230–236 (1992).

    CAS  PubMed  Google Scholar 

  113. Straif, D., Werz, O., Kellner, R., Bahr, U. & Steinhilber, D. Glutathione peroxidase-1 but not -4 is involved in the regulation of cellular 5-lipoxygenase activity in monocytic cells. Biochem. J. 349, 455–461 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Blankenberg, S. et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 349, 1605–1613 (2003).

    CAS  PubMed  Google Scholar 

  115. Wickelgren, I. Heart disease. Gene suggests asthma drugs may ease cardiovascular inflammation. Science 303, 941 (2004).

    CAS  PubMed  Google Scholar 

  116. Palinski, W. Aneurysms: leukotrienes weaken aorta from the outside. Nature Med. 10, 896–898 (2004)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.D.F. holds a Canada Research Chair in Molecular, Cellular and Physiological Medicine. Supported by funds from the Canadian Institutes of Health Research, National Institutes of Health, Canadian Foundation for Innovation and Ontario Innovation Trust. I gratefully acknowledge discussions with L. Zhao, A. Habenicht and J. Evans over the course of our studies examining 5-lipoxygenase and cardiovascular disease. I regret the likely oversight of some relevant references from my colleagues due to page constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

C.D.F. receives research funding from Merck & Co. and consulting fees from Critical Therapeutics Inc.

Related links

Related links

DATABASES

Entrez Gene

ALOX5

ALOX5AP

BLT1

BLT2

CRP

CysLT1

CysLT2

IL-6

IL-8

MPO

OMIM

Arthritis

Inflammatory bowel disease

Psoriasis

FURTHER INFORMATION

decode Genetics

Glossary

G-PROTEIN-COUPLED RECEPTORS

G-protein-coupled receptors comprise the largest gene family of receptors and mediate a broad array of signalling to peptides, lipids, amines and a variety of hormones.

HPETE

The initial product of the 5-lipoxygenase pathway is a hydroperoxyeicosatetraenoic acid, literally an oxygenated arachidonic acid molecule.

ASTHMA EARLY AND LATE PHASE AIRWAY RESPONSE

An immune system disorder characterized by a rapid fall in lung function to allergen exposure/exercise (early-phase response), followed several hours later by a second, delayed fall (late-phase airway resposne).

SP1

A member of a family of transcription factors that bind preferentially to promoter regions of genes containing GC-rich sequences.

ω3 POLYUNSATURATED FATTY ACID

Important dietary lipid characterized by one of the double bonds situated 3 carbons from the 'omega' end of the carbon chain backbone derived most often from marine sources.

ω6 POLYUNSATURATED FATTY ACID

Important dietary lipid characterized by one of the double bonds situated 6 carbons from the 'omega' end of the carbon chain backbone derived most often from animal sources.

APOE

Apolipoprotein E is a key protein constituent of certain lipoproteins and a ligand for hepatic receptors. Deficiency of this protein in mice leads to increased plasma cholesterol and atherosclerosis.

LDL-R

The low-density lipoprotein receptor is the main portal of cholesterol entry into cells. Most cells are capable of synthesizing LDL via the mevalonate pathway. Deficiency of this receptor in mice leads to atherosclerosis on a high-fat diet.

ABDOMINAL AORTIC ANEURYSM

A chronic degenerative and remodelling process of a specific region of the arterial wall that is characterized by dilation greater than 3.0 cm in humans.

QRT-PCR

Quantitative real-time polymerase chain reaction is the current state-of-the-art method for assessing gene expression.

LC/MS/MS

Liquid chromatography/mass spectrometry/mass spectrometry is a robust method for the analytical measurement and precise identification of biological and chemical metabolites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funk, C. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov 4, 664–672 (2005). https://doi.org/10.1038/nrd1796

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing