Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic angiogenesis in cardiovascular disease

Key Points

  • The development of drugs capable of stimulating revascularization of underperfused tissues remains an exciting but unrealized goal in cardiovascular medicine.

  • Recently, much has been learned about the process of new vessel growth and enlargement, the characteristics of agents that might generate new blood vessels in patients, and the nature of clinical investigations that could show efficacy and safety of this novel class of medications.

  • This review first summarizes the current state of clinical experience, and then discusses three principal issues that need to be resolved:

  • First, the identification of agents that promote growth and remodelling of larger vessels (arteriogenesis) rather than smaller vessels (true angiogenesis);

  • Second, the establishment of the required length of drug exposure in vivo and optimal means of drug delivery;

  • Third, the selection of patients, clinical trial end-points and indications for these agents.

Abstract

Despite considerable progress in the management of ischaemic cardiovascular disease during the past three decades, there remains a significant population of patients who are not served well by current treatment approaches. Stimulating revascularization in ischaemic regions is an attractive novel therapeutic strategy, and several angiogenic agents anticipated to have the potential to achieve this goal have been clinically evaluated in recent years. However, as yet none have shown sufficient efficacy to be approved. Here, we consider the key findings from the completed clinical trials of therapeutic angiogenesis in cardiovascular disease, and discuss possible changes to the way in which such agents are developed that could improve the chances of success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic angiogenesis.
Figure 2: Arteriogenesis.
Figure 3: Drug delivery to the myocardium.

Similar content being viewed by others

References

  1. Henry, T. D. et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 107, 1359–1365 (2003).

    CAS  PubMed  Google Scholar 

  2. Simons, M. et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105, 788–793 (2002).

    CAS  PubMed  Google Scholar 

  3. Laham, R. J. et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100, 1865–1871 (1999).

    CAS  PubMed  Google Scholar 

  4. Ruel, M. et al. Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J. Thorac. Cardiovasc. Surg. 124, 28–34 (2002).

    CAS  PubMed  Google Scholar 

  5. Lederman, R. J. et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359, 2053–2058 (2002).

    CAS  PubMed  Google Scholar 

  6. Grines, C. L. et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105, 1291–1297 (2002).

    CAS  PubMed  Google Scholar 

  7. Losordo, D. W. et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

    CAS  PubMed  Google Scholar 

  8. Hedman, M. et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107, 2677–2683 (2003).

    CAS  PubMed  Google Scholar 

  9. Jiang, C. et al. Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF-1α. Physiol. Genomics 8, 23–32 (2002).

    CAS  PubMed  Google Scholar 

  10. Jeong, J. W. et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell 111, 709–720 (2002).

    CAS  PubMed  Google Scholar 

  11. Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med. 9, 677–684 (2003).

    CAS  PubMed  Google Scholar 

  12. Fang, J., Yan, L., Shing, Y. & Moses, M. A. HIF-1α-mediated up-regulation of vascular endothelial growth factor, independent of basic fibroblast growth factor, is important in the switch to the angiogenic phenotype during early tumorigenesis. Cancer Res. 61, 5731–5735 (2001).

    CAS  PubMed  Google Scholar 

  13. Ulleras, E., Wilcock, A., Miller, S. J. & Franklin, G. C. The sequential activation and repression of the human PDGF-B gene during chronic hypoxia reveals antagonistic roles for the depletion of oxygen and glucose. Growth Factors 19, 233–245 (2001).

    CAS  PubMed  Google Scholar 

  14. Li, J., Shworak, N. W. & Simons, M. Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1α-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J. Cell Sci. 115, 1951–1959 (2002).

    CAS  PubMed  Google Scholar 

  15. Schaper, W. & Ito, W. Molecular mechanisms of collateral vessel growth. Circ. Res. 79, 911–919 (1996).

    CAS  PubMed  Google Scholar 

  16. Helisch, A. & Schaper, W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation 10, 83–97 (2003). A current and comprehensive review of arteriogenesis.

    PubMed  Google Scholar 

  17. Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947 (2002). This important study suggests that a prolonged course of growth-factor expression might be required to stabilize and preserve newly formed vasculature.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopez, J. et al. Hemodynamic effects of intracoronary VEGF delivery: evidence of tachyphylaxis and NO dependence of response. Am. J. Physiol. 273, H1317–H1323 (1997).

    CAS  PubMed  Google Scholar 

  19. Sato, K. et al. Efficacy of intracoronary or intravenous VEGF165 in a pig model of chronic myocardial ischemia. J. Am. Coll. Cardiol. 37, 616–623 (2001).

    CAS  PubMed  Google Scholar 

  20. Vincent, K. A. et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation 102, 2255–2261 (2000).

    CAS  PubMed  Google Scholar 

  21. Ware, J. A. & Simons, M. Angiogenesis in ischemic heart disease. Nature Med. 3, 158–164 (1997).

    CAS  PubMed  Google Scholar 

  22. Ito, W. D. et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res. 80, 829–837 (1997).

    CAS  PubMed  Google Scholar 

  23. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van Royen, N. et al. Effects of local MCP-1 protein therapy on the development of the collateral circulation and atherosclerosis in Watanabe hyperlipidemic rabbits. Cardiovasc. Res. 57, 178–185 (2003).

    CAS  PubMed  Google Scholar 

  25. Voskuil, M. et al. Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am. J. Physiol. Heart Circ. Physiol. 284, H1422–H1428 (2003).

    CAS  PubMed  Google Scholar 

  26. Heil, M. et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am. J. Physiol. Heart Circ. Physiol. 283, H2411–H2419 (2002).

    CAS  PubMed  Google Scholar 

  27. Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Med. 9, 702–712 (2003).

    CAS  PubMed  Google Scholar 

  28. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    CAS  PubMed  Google Scholar 

  29. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    CAS  PubMed  Google Scholar 

  30. Fuchs, S. et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. Am. Coll. Cardiol. 37, 1726–1732 (2001).

    CAS  PubMed  Google Scholar 

  31. Kocher, A. A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med. 7, 430–436 (2001).

    CAS  PubMed  Google Scholar 

  32. Assmus, B. et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    PubMed  Google Scholar 

  33. Tse, H. F. et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361, 47–49 (2003).

    PubMed  Google Scholar 

  34. Stamm, C. et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361, 45–46 (2003).

    PubMed  Google Scholar 

  35. Tomita, N., Morishita, R., Higaki, J. & Ogihara, T. Novel molecular therapeutic approach to cardiovascular disease based on hepatocyte growth factor. J. Atheroscler. Thromb. 7, 1–7 (2000).

    CAS  PubMed  Google Scholar 

  36. Li, J. et al. PR39, a peptide regulator of angiogenesis. Nature Med. 6, 49–55 (2000).

    CAS  PubMed  Google Scholar 

  37. Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Med. 8, 831–840 (2002).

    CAS  PubMed  Google Scholar 

  38. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nature Med. 9, 604–613 (2003). Demonstration of functional synergy between the two growth factors in several model settings.

    CAS  PubMed  Google Scholar 

  39. Khurana, R. & Simons, M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc. Med. 13, 116–122 (2003).

    CAS  PubMed  Google Scholar 

  40. Post, M. J., Laham, R., Sellke, F. W. & Simons, M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc. Res. 49, 522–531 (2001).

    CAS  PubMed  Google Scholar 

  41. Hughes, G. C., Post, M. J., Simons, M. & Annex, B. H. Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J. Appl. Physiol. 94, 1689–1701 (2003).

    PubMed  Google Scholar 

  42. Simons, M. Therapeutic coronary angiogenesis: a fronte praecipitium a tergo lupi? Am. J. Physiol. 280, H1923–H1927 (2001).

    CAS  Google Scholar 

  43. Laham, R. J. et al. Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab. Dispos. 27, 821–826 (1999).

    CAS  PubMed  Google Scholar 

  44. Muhlhauser, J. et al. Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther. 3, 145–153 (1996).

    CAS  PubMed  Google Scholar 

  45. Wright, M. J., Wightman, L. M., Latchman, D. S. & Marber, M. S. In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Ther. 8, 1833–1839 (2001).

    CAS  PubMed  Google Scholar 

  46. Wright, M. J. et al. In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res. Cardiol. 96, 227–236 (2001).

    CAS  PubMed  Google Scholar 

  47. Nevo, N. et al. Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection. J. Gene Med. 3, 42–50 (2001).

    CAS  PubMed  Google Scholar 

  48. Grossman, P. M., Han, Z., Palasis, M., Barry, J. J. & Lederman, R. J. Incomplete retention after direct myocardial injection. Catheter Cardiovasc. Interv. 55, 392–397 (2002).

    PubMed  Google Scholar 

  49. Communal, C. et al. Decreased efficiency of adenovirus-mediated gene transfer in aging cardiomyocytes. Circulation 107, 1170–1175 (2003).

    PubMed  PubMed Central  Google Scholar 

  50. March, K. L. et al. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol. 22, 123–129 (1999).

    Google Scholar 

  51. Gerber, T. C. et al. The coronary venous system: an alternate portal to the myocardium for diagnostic and therapeutic procedures in invasive cardiology. Curr. Interv. Cardiol. Rep. 2, 27–37 (2000).

    CAS  PubMed  Google Scholar 

  52. Schultz, A. et al. Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100, 547–552 (1999).

    CAS  PubMed  Google Scholar 

  53. Matsunaga, T. et al. Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 105, 2185–2191 (2002).

    CAS  PubMed  Google Scholar 

  54. Simons, M. et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. Circulation 102, E73–E86 (2000). A comprehensive discussion of clinical trial issues in the field of therapeutic angiogenesis.

    CAS  PubMed  Google Scholar 

  55. Dougherty, C. M., Dewhurst, T., Nichol, W. P. & Spertus, J. Comparison of three quality of life instruments in stable angina pectoris: Seattle Angina Questionnaire, Short Form Health Survey (SF- 36), and Quality of Life Index-Cardiac Version III. J. Clin. Epidemiol. 51, 569–575 (1998).

    CAS  PubMed  Google Scholar 

  56. Richardson, R. S. et al. Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. Am. J. Physiol. 277, H2247–H2252 (1999).

    CAS  PubMed  Google Scholar 

  57. Jones, M. K. et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nature Med. 5, 1418–1423 (1999).

    CAS  PubMed  Google Scholar 

  58. Masferrer, J. L., Koki, A. & Seibert, K. COX-2 inhibitors. A new class of antiangiogenic agents. Ann. NY Acad. Sci. 889, 84–86 (1999).

    CAS  PubMed  Google Scholar 

  59. Harada, K. et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am. J. Physiol. 270, H1791–H1802 (1996).

    CAS  PubMed  Google Scholar 

  60. Post, M. J. & Simons, M. in Topol's Textbook of Interventional Cardiology 4th edn (ed Topol, E. J.) 757–779 (W. B. Saunders, Philadelphia, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Simons.

Related links

Related links

DATABASES

LocusLink

Angiopoietin-2

FGF2

FGF4

FLT-1

HIF-1α

MCP-1

PDGF-B

VEGF

FURTHER INFORMATION

Encyclopedia of Life Sciences

cardiovascular disease: epidemiology

ischemic heart disease

Glossary

CLAUDICATION

A condition in which cramping pain in the leg is induced by exercise, typically as a result of obstruction of the arteries.

ANGIOPLASTY

Catheter-based repair or unblocking of a blood vessel, such as a coronary artery.

RESTENOSIS

A re-narrowing or blockage of an artery at the same site where treatment, such as an angioplasty, has already been performed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, M., Ware, J. Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2, 863–872 (2003). https://doi.org/10.1038/nrd1226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing