Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of cardiac MRI and nuclear imaging in cardiac resynchronization therapy

Abstract

Cardiac resynchronization has emerged as a highly effective therapy for heart failure. However, up to 40% of patients do not benefit from this treatment. In this Review, we discuss the potential role of MRI and nuclear molecular imaging in providing additional insights into the response to cardiac resynchronization therapy. Variables with potential prognostic and therapeutic values include the evaluation of cardiac dyssynchrony, scar, cardiac sympathetic function, myocardial blood flow, myocardial glucose and oxidative metabolism. Other molecular targets to characterize apoptosis, fatty acid metabolism, angiogenesis and angiotensin-converting enzyme activity will also be described. The potential use of these techniques in identifying and measuring responses to cardiac resynchronization therapy and future areas of research will be explored.

Key Points

  • Cardiac resynchronization therapy (CRT) is standard treatment for patients with advanced heart failure, but up to 30% of patients receive no benefit and identifying those who do respond is challenging

  • Single-center studies have shown that intraventricular dyssynchrony is predictive of CRT response, which can be measured by echocardiographic, nuclear and cardiac MRI techniques

  • Echocardiography is the most widely used technique to evaluate dyssynchrony and predict CRT response but most echocardiographic markers have limited inter-observer reproducibility and have not proved consistently useful as predictors of outcome after CRT

  • Cardiac MRI and nuclear imaging might provide additional insight into CRT response through evaluation of scar, tissue viability, myocardial blood flow and metabolism, and measuring cardiac sympathetic activity

  • The choice of a given imaging modality depends on the robustness of the technique, local availability and expertise, potential for integrated assessment, radiation exposure, characteristics of the patient and contraindications

  • Further experimental and clinical studies in molecular imaging, as well as large, carefully designed, prospective trials, are needed to examine the use of promising imaging technology to identify CRT responders

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tagged MRI.
Figure 2: Tissue velocity mapping by MRI.
Figure 3: Cine images of DENSE MRI.
Figure 4: Late gadolinium enhancement MRI.
Figure 5: Short axis, horizontal long axis and polar map uptake of FDG–PET and 99mTc-sestamibi–SPECT images at baseline and after CRT in a patient with severe nonischemic cardiomyopathy.
Figure 6: The septal:lateral ratio of regional left ventricular oxidative metabolism measured by 11C-acetate PET was significantly higher in simultaneous CRT, compared with atrial pacing with AAI.

Similar content being viewed by others

References

  1. Leclercq, C. & Kass, D. A. Retiming the failing heart: principles and current clinical status of cardiac resynchronization. J. Am. Coll. Cardiol. 39, 194–201 (2002).

    PubMed  Google Scholar 

  2. Leclercq, C. & Hare, J. M. Ventricular resynchronization: current state of the art. Circulation 109, 296–299 (2004).

    PubMed  Google Scholar 

  3. Strickberger, S. A. et al. Patient selection for cardiac resynchronization therapy: from the Council on Clinical Cardiology Subcommittee on Electrocardiography and Arrhythmias and the Quality of Care and Outcomes Research Interdisciplinary Working Group, in collaboration with the Heart Rhythm Society. Circulation 111, 2146–2150 (2005).

    PubMed  Google Scholar 

  4. Swedberg, K. et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005). Eur. Heart J. 26, 1115–1140 (2005).

    PubMed  Google Scholar 

  5. Epstein, A. E. et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 117, e350–e408 (2008).

    Google Scholar 

  6. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    CAS  PubMed  Google Scholar 

  7. Cleland, J. et al. Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response. A report from the CARE-HF (cardiac resynchronization in heart failure) trial. J. Am. Coll. Cardiol. 52, 438–445 (2008).

    PubMed  Google Scholar 

  8. Abraham, W. T. Cardiac resynchronization therapy for heart failure: biventricular pacing and beyond. Curr. Opin. Cardiol. 17, 346–352 (2002).

    PubMed  Google Scholar 

  9. Saxon, L. A. et al. Acute effects of intraoperative multisite ventricular pacing on left ventricular function and activation/contraction sequence in patients with depressed ventricular function. J. Cardiovasc. Electrophysiol. 9, 13–21 (1998).

    CAS  PubMed  Google Scholar 

  10. Bax, J. J. et al. Cardiac resynchronization therapy: part 1—issues before device implantation. J. Am. Coll. Cardiol. 46, 2153–2167 (2005).

    PubMed  Google Scholar 

  11. Ypenburg, C. et al. Noninvasive imaging in cardiac resynchronization therapy—part 1: selection of patients. PACE 31, 1475–1499 (2008).

    PubMed  Google Scholar 

  12. Chung, E. S. et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117, 2608–2616 (2008).

    PubMed  Google Scholar 

  13. Jessup, M. et al. 2009 Focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J. Am. Coll. Cardiol. 53, 47 (2009).

    Google Scholar 

  14. Abraham, T. et al. Imaging cardiac resynchronization therapy. JACC Cardiovasc. Imaging 2, 12 (2009).

    Google Scholar 

  15. Ghio, S. et al. Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. Eur. Heart J. 25, 9 (2004).

    Google Scholar 

  16. Howlett, J. G. et al. Canadian Cardiovascular Society consensus conference guidelines on heart failure, update 2009: diagnosis and management of right-sided heart failure, myocarditis, device therapy and recent important clinical trials. Canad. J. Cardiol. 25, 21 (2009).

    Google Scholar 

  17. Dickstein, K. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure, 2008. Eur. Heart J. 29, 55 (2008).

    Google Scholar 

  18. Reichek, N. MRI myocardial tagging. J. Magn. Reson. Imaging 10, 609–616 (1999).

    CAS  PubMed  Google Scholar 

  19. Helm, R. H. et al. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 111, 2760–2767 (2005).

    PubMed  PubMed Central  Google Scholar 

  20. Bilchick, K. C. et al. Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc. Imaging 1, 561–568 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Lardo, A. C., Abraham, T. P. & Kass, D. A. Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J. Am. Coll. Cardiol. 46, 2223–2228 (2005).

    PubMed  Google Scholar 

  22. Osman, N. F. & Prince, J. L. Regenerating MR tagged images using harmonic phase (HARP) methods. IEEE Trans. Biomed. Eng. 51, 1428–1433 (2004).

    PubMed  Google Scholar 

  23. Osman, N. F., Kerwin, W. S., McVeigh, E. R. & Prince, J. L. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Res. Med. 42, 1048–1060 (1999).

    CAS  Google Scholar 

  24. Westenberg, J. J. et al. Assessment of left ventricular dyssynchrony in patients with conduction delay and idiopathic dilated cardiomyopathy: head-to-head comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging. J. Am. Coll. Cardiol. 47, 2042–2048 (2006).

    PubMed  Google Scholar 

  25. Delfino, J. G., Fornwalt, B. K., Oshinski, J. N. & Lerakis, S. Role of MRI in patient selection for CRT. Echocardiography 25, 1176–1185 (2008).

    PubMed  Google Scholar 

  26. Delfino, J. G. et al. Comparison of myocardial velocities obtained with magnetic resonance phase velocity mapping and tissue Doppler imaging in normal subjects and patients with left ventricular dyssynchrony. J. Magn. Reson. Imaging 24, 304–311 (2006).

    PubMed  Google Scholar 

  27. Aletras, A. H., Balaban, R. S. & Wen, H. High-resolution strain analysis of the human heart with fast-DENSE. J. Magn. Reson. 140, 41–57 (1999).

    CAS  PubMed  Google Scholar 

  28. Aletras, A. H., Ding, S., Balaban, R. S. & Wen, H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J. Magn. Reson. 137, 247–252 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Arai, A. E., Gaither, C. C. 3rd, Epstein, F. H., Balaban, R. S. & Wolff, S. D. Myocardial velocity gradient imaging by phase contrast MRI with application to regional function in myocardial ischemia. Magn. Reson. Med. 42, 98–109 (1999).

    CAS  PubMed  Google Scholar 

  30. Kim, D., Epstein, F. H., Gilson, W. D. & Axel, L. Increasing the signal-to-noise ratio in DENSE MRI by combining displacement-encoded echoes. Magn. Reson. Med. 52, 188–192 (2004).

    PubMed  Google Scholar 

  31. Kim, D., Gilson, W. D., Kramer, C. M. & Epstein, F. H. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 230, 862–871 (2004).

    PubMed  Google Scholar 

  32. Kim, R. J. et al. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117, 629–637 (2008).

    PubMed  Google Scholar 

  33. Wen, H. et al. Adaptive postprocessing techniques for myocardial tissue tracking with displacement-encoded MR imaging. Radiology 246, 229–240 (2008).

    PubMed  Google Scholar 

  34. O'Connell, J. W. et al. A unique method by which to quantitate synchrony with equilibrium radionuclide angiography. J. Nucl. Cardiol. 12, 441–450 (2005).

    PubMed  Google Scholar 

  35. Toussaint, J. F. et al. Basal asynchrony and resynchronization with biventricular pacing predict long-term improvement of LV function in heart failure patients. Pacing Clin. Electrophysiol. 26, 1815–1823 (2003).

    PubMed  Google Scholar 

  36. Henneman, M. M. et al. Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J. Am. Coll. Cardiol. 49, 1708–1714 (2007).

    PubMed  Google Scholar 

  37. White, J. A. et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J. Am. Coll. Cardiol. 48, 1953–1960 (2006).

    PubMed  Google Scholar 

  38. Bleeker, G. B. et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113, 969–976 (2006).

    PubMed  Google Scholar 

  39. Ypenburg, C. et al. Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am. J. Cardiol. 99, 657–660 (2007).

    PubMed  Google Scholar 

  40. Chalil, S. et al. Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace 9, 1031–1037 (2007).

    PubMed  Google Scholar 

  41. Chalil, S. et al. Effect of posterolateral left ventricular scar on mortality and morbidity following cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 30, 1201–1209 (2007).

    CAS  PubMed  Google Scholar 

  42. Ansalone, G. et al. Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J. Am. Coll. Cardiol. 39, 489–499 (2002).

    PubMed  Google Scholar 

  43. Beanlands, R. S. et al. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 82, 1802–1814 (1990).

    CAS  PubMed  Google Scholar 

  44. Christian, T. F. et al. Mismatch of left ventricular function and infarct size demonstrated by technetium-99m isonitrile imaging after reperfusion therapy for acute myocardial infarction: identification of myocardial stunning and hyperkinesia. J. Am. Coll. Cardiol. 16, 1632–1638 (1990).

    CAS  PubMed  Google Scholar 

  45. Adelstein, E. C. & Saba, S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am. Heart J. 153, 105–112 (2007).

    PubMed  Google Scholar 

  46. Ypenburg, C. et al. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur. Heart J. 28, 33–41 (2007).

    PubMed  Google Scholar 

  47. Sciagra, R. et al. Myocardial perfusion imaging using gated SPECT in heart failure patients undergoing cardiac resynchronization therapy. J. Nucl. Med. 45, 164–168 (2004).

    PubMed  Google Scholar 

  48. van Campen, C. M. C. et al. FDG PET as a predictor of response to resynchronisation therapy in patients with ischaemic cardiomyopathy. Eur. J. Nucl. Med. Mol. Imaging 34, 309–315 (2007).

    CAS  PubMed  Google Scholar 

  49. Ypenburg, C. et al. Extent of viability to predict response to cardiac resynchronization therapy in ischemic heart failure patients. J. Nucl. Med. 47, 1565–1570 (2006).

    PubMed  Google Scholar 

  50. Schinkel, A. F. et al. Hibernating myocardium: diagnosis and patient outcomes. Curr. Prob. Cardiol. 32, 375–410 (2007).

    Google Scholar 

  51. Van de Veire, N. R. et al. Noninvasive imaging of cardiac venous anatomy with 64-slice multi-slice computed tomography and noninvasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy. Am. J. Cardiol. 101, 1023–1029 (2008).

    PubMed  Google Scholar 

  52. Nezafat, R. et al. Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing. Magn. Reson. Med. 58, 1196–1206 (2007).

    PubMed  Google Scholar 

  53. Chareonthaitawee, P. et al. Reproducibility of measurements of regional myocardial blood flow in a model of coronary artery disease: comparison of H215O and 13NH3 PET techniques. J. Nucl. Med. 47, 1193–1201 (2006).

    CAS  PubMed  Google Scholar 

  54. Sundell, J. et al. The effects of cardiac resynchronization therapy on left ventricular function, myocardial energetics and metabolic reserve in patients with dilated cardiomyopathy and heart failure. J. Am. Coll. Cardiol. 43, 1027–1033 (2004).

    PubMed  Google Scholar 

  55. Braunschweig, F. et al. Effects of biventricular pacing on myocardial blood flow and oxygen consumption using carbon-11 acetate positron emission tomography in patients with heart failure. Am. J. Cardiol. 92, 95–99 (2003).

    PubMed  Google Scholar 

  56. Lindner, O. et al. Effect of cardiac resynchronization therapy on global and regional oxygen consumption and myocardial blood flow in patients with non-ischaemic and ischaemic cardiomyopathy. Eur. Heart J. 26, 70–76 (2005).

    PubMed  Google Scholar 

  57. Lindner, O. et al. Cardiac re-synchronization therapy: effects on myocardial perfusion at rest, after vasodilation and oxygen consumption. Nuclear-Medizin 45, 10–14 (2006).

    CAS  Google Scholar 

  58. Nowak, B. et al. Effects of cardiac resynchronization therapy on myocardial blood flow measured by oxygen-15 water positron emission tomography in idiopathic-dilated cardiomyopathy and left bundle branch block. Am. J. Cardiol. 93, 496–499 (2004).

    PubMed  Google Scholar 

  59. Nielsen, J. C. et al. Regional myocardial perfusion during chronic biventricular pacing and after acute change of the pacing mode in patients with congestive heart failure and bundle branch block treated with an atrioventricular sequential biventricular pacemaker. Eur. J. Heart Fail. 5, 179–186 (2003).

    PubMed  Google Scholar 

  60. Neri, G., Zanco, P., Zanon, F. & Buchberger, R. Effect of biventricular pacing on metabolism and perfusion in patients affected by dilated cardiomyopathy and left bundle branch block: evaluation by positron emission tomography. Europace 5, 111–115 (2003).

    CAS  PubMed  Google Scholar 

  61. Knaapen, P. et al. Effects of cardiac resynchronization therapy on myocardial perfusion reserve. Circulation 110, 646–651 (2004).

    PubMed  Google Scholar 

  62. Baller, D. et al. Myocardial oxygen consumption and perfusion before and after cardiac resynchronization therapy: experimental observations and clinical implications. Eur. Heart J. 6 (Suppl.), 8 (2004).

    Google Scholar 

  63. Scheuer, J. Metabolic factors in myocardial failure. Circulation 87, 3 (1993).

    Google Scholar 

  64. Nowak, B. et al. Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J. Am. Coll. Cardiol. 41, 1523–1528 (2003).

    PubMed  Google Scholar 

  65. Neri, G. et al. Myocardial perfusion and metabolic changes induced by conventional right and biventricular pacing in dilated cardiomyopathy evaluated by positron emission tomography. It. Heart J. 3, 637–642 (2002).

    Google Scholar 

  66. Bassingthwaighte, J. B. & Li, Z. Heterogeneities in myocardial flow and metabolism: exacerbation with abnormal excitation. Am. J. Cardiol. 83, 7H–12H (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Knaapen, P. et al. Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 115, 918–927 (2007).

    PubMed  Google Scholar 

  68. Ukkonen, H. et al. Effect of cardiac resynchronization on myocardial efficiency and regional oxidative metabolism. Circulation 107, 28–31 (2003).

    CAS  PubMed  Google Scholar 

  69. Christenson, S. D. et al. Effects of simultaneous and optimized sequential cardiac resynchronization therapy on myocardial oxidative metabolism and efficiency. J. Cardiovasc. Electrophysiol. 19, 125–132 (2008).

    PubMed  Google Scholar 

  70. Knuuti, J. et al. Assessment of right ventricular oxidative metabolism by PET in patients with idiopathic dilated cardiomyopathy undergoing cardiac resynchronization therapy. Eur. J. Nucl. Med. Mol. Imaging 31, 1592–1598 (2004).

    CAS  PubMed  Google Scholar 

  71. Henneman, M. M., Bengel, F. M., van der Wall, E. E., Knuuti, J. & Bax, J. J. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J. Nucl. Cardiol. 15, 442–455 (2008).

    PubMed  Google Scholar 

  72. Merlet, P. et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J. Nucl. Med. 33, 471–477 (1992).

    CAS  PubMed  Google Scholar 

  73. Kioka, H. et al. Prediction of sudden death in patients with mild-to-moderate chronic heart failure by using cardiac iodine-123 metaiodobenzylguanidine imaging. Heart 93, 1213–1218 (2007).

    PubMed  PubMed Central  Google Scholar 

  74. Erol-Yilmaz, A. et al. Cardiac resynchronization induces favorable neurohumoral changes. PACE 28, 304–310 (2005).

    PubMed  Google Scholar 

  75. Nishioka, S. A. et al. Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J. Nucl. Cardiol. 14, 852–859 (2007).

    PubMed  Google Scholar 

  76. Burri, H. et al. Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy. Europace 10, 374–378 (2008).

    PubMed  Google Scholar 

  77. Cha, Y. M. et al. Cardiac resynchronization therapy upregulates cardiac autonomic control. J. Cardiovasc. Electrophysiol. 19, 1045–1052 (2008).

    PubMed  PubMed Central  Google Scholar 

  78. Gould, P. A. et al. Improvement in cardiac adrenergic function post biventricular pacing for heart failure. Europace 9, 751–756 (2007).

    PubMed  Google Scholar 

  79. Russel, I. K. et al. Mechanical dyssynchrony or myocardial shortening as MRI predictor of response to biventricular pacing? J. Magn. Reson. Imaging 26, 1452–1460 (2007).

    PubMed  Google Scholar 

  80. Kerwin, W. F. et al. Ventricular contraction abnormalities in dilated cardiomyopathy: effect of biventricular pacing to correct interventricular dyssynchrony. J. Am. Coll. Cardiol. 35, 1221–1227 (2000).

    CAS  PubMed  Google Scholar 

  81. Fauchier, L. et al. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: a prognostic study with Fourier phase analysis of radionuclide angioscintigraphy. J. Am. Coll. Cardiol. 40, 2022–2030 (2002).

    PubMed  Google Scholar 

  82. Henneman, M. M. et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J. Nucl. Med. 48, 1104–1111 (2007).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panithaya Chareonthaitawee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, N., Martinez, M., Gersh, B. et al. Role of cardiac MRI and nuclear imaging in cardiac resynchronization therapy. Nat Rev Cardiol 6, 759–770 (2009). https://doi.org/10.1038/nrcardio.2009.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing