Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Characterizing the spatiotemporal expression of RNAs and proteins in the starlet sea anemone, Nematostella vectensis

Abstract

In an effort to reconstruct the early evolution of animal genes and proteins, there is an increasing focus on basal animal lineages such as sponges, cnidarians, ctenophores and placozoans. Among the basal animals, the starlet sea anemone Nematostella vectensis (phylum Cnidaria) has emerged as a leading laboratory model organism partly because it is well suited to experimental techniques for monitoring and manipulating gene expression. Here we describe protocols adapted for use in Nematostella to characterize the expression of RNAs by in situ hybridization using either chromogenic or fluorescence immunohistochemistry (1 week), as well as to characterize protein expression by whole-mount immunofluorescence (3 d). We also provide a protocol for labeling cnidocytes (3 h), the phylum-specific sensory-effector cell type that performs a variety of functions in cnidarians, including the delivery of their venomous sting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal steps in chromogenic ISH and FISH.
Figure 2: Example of ISH in Nematostella.
Figure 3: Example of indirect immunofluorescence.
Figure 4: Example of cnidocyte staining.
Figure 5: Overview of the four protocol options described here.

Similar content being viewed by others

References

  1. Hand, C. & Uhlinger, K. The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol. Bull. 182, 169–176 (1992).

    Article  CAS  Google Scholar 

  2. Hand, C. & Uhlinger, K. The unique, widely distributed sea anemone, Nematostella vectensis Stephenson: a review, new facts, and questions. Estuaries 17, 501–508 (1994).

    Article  Google Scholar 

  3. Hand, C. & Uhlinger, K.R. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invert. Biol. 114, 9–18 (1995).

    Article  Google Scholar 

  4. Putnam, N.H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  Google Scholar 

  5. Peterson, K.J., Cotton, J.A., Gehling, J.G. & Pisani, D. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1435–1443 (2008).

    Article  Google Scholar 

  6. Fautin, D.G. Structural diversity, systematics, and evolution of cnidae. Toxicon 54, 1054–1064 (2009).

    Article  CAS  Google Scholar 

  7. Finnerty, J.R., Paulson, D., Burton, P., Pang, K. & Martindale, M.Q. Early evolution of a homeobox gene: the parahox gene Gsx in the Cnidaria and the Bilateria. Evol. Dev. 5, 331–345 (2003).

    Article  CAS  Google Scholar 

  8. Scholz, C.B. & Technau, U. The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev. Genes Evol. 212, 563–570 (2003).

    CAS  PubMed  Google Scholar 

  9. Finnerty, J.R., Pang, K., Burton, P., Paulson, D. & Martindale, M.Q. Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone. Science 304, 1335–1337 (2004).

    Article  CAS  Google Scholar 

  10. Martindale, M.Q., Pang, K. & Finnerty, J.R. Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131, 2463–2474 (2004).

    Article  CAS  Google Scholar 

  11. Ryan, J.F. et al. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2, e153 (2007).

    Article  Google Scholar 

  12. Burton, P.M. & Finnerty, J.R. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev. Genes Evol. 219, 79–87 (2009).

    Article  Google Scholar 

  13. Tessmar-Raible, K., Steinmetz, P.R., Snyman, H., Hassel, M. & Arendt, D. Fluorescent two-color whole mount in situ hybridization in Platynereis dumerilii (Polychaeta, Annelida), an emerging marine molecular model for evolution and development. Biotechniques 39, 460, 462, 464 (2005).

    Article  Google Scholar 

  14. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004).

    Article  CAS  Google Scholar 

  15. Ciruna, B. & Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell. 1, 37–49 (2001).

    Article  CAS  Google Scholar 

  16. Layden, M.J., Boekhout, M. & Martindale, M.Q. Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139, 1013–1022 (2012).

    Article  CAS  Google Scholar 

  17. Wikramanayake, A.H. et al. An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation. Nature 426, 446–450 (2003).

    Article  CAS  Google Scholar 

  18. Marlow, H.Q., Srivastava, M., Matus, D.Q., Rokhsar, D. & Martindale, M.Q. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev. Neurobiol. 69, 235–254 (2009).

    Article  CAS  Google Scholar 

  19. Wolenski, F.S. et al. Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol. Cell Biol. 31, 1076–1087 (2011).

    Article  CAS  Google Scholar 

  20. Wolenski, F.S., Bradham, C.A., Finnerty, J.R. & Gilmore, T.D. NF-κB is required for the development of subset of cnidocytes in the body column of the sea anemoneNematostella vectensis. Dev. Biol. 373, 205–215 (2013).

    Article  CAS  Google Scholar 

  21. Zenkert, C., Takahashi, T., Diesner, M.O. & Özbek, S. Morphological and molecular analysis of the Nematostella vectensis cnidom. PLoS ONE 6, e22725 (2011).

    Article  CAS  Google Scholar 

  22. Shi, S.R., Chaiwun, B., Young, L., Cote, R.J. & Taylor, C.R. Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J. Histochem. Cytochem. 41, 1599–1604 (1993).

    Article  CAS  Google Scholar 

  23. Anderson, P.A. & Bouchard, C. The regulation of cnidocyte discharge. Toxicon 54, 1046–1053 (2009).

    Article  CAS  Google Scholar 

  24. Watson, G., Mire, P. & Kinler, K. Mechanosensitivity in the model sea anemone Nematostella vectensis. Mar. Biol. 156, 2129–2137 (2009).

    Article  Google Scholar 

  25. Szczepanek, S., Cikala, M. & David, C.N. Poly-γ-glutamate synthesis during formation of nematocyst capsules in Hydra. J. Cell Sci. 115, 745–751 (2002).

    CAS  PubMed  Google Scholar 

  26. Marlow, H., Roettinger, E., Boekhout, M. & Martindale, M.Q. Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev. Biol. 362, 295–308 (2012).

    Article  CAS  Google Scholar 

  27. Magie, C.R., Pang, K. & Martindale, M.Q. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev. Genes Evol. 215, 618–630 (2005).

    Article  CAS  Google Scholar 

  28. Fritzenwanker, J.H., Saina, M. & Technau, U. Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev. Biol. 275, 389–402 (2004).

    Article  CAS  Google Scholar 

  29. Wolenski, F.S., Finnerty, J.R. & Gilmore, T.D. Preparation of antiserum and detection of proteins by western blotting using the starlet sea anemone, Nematostella vectensis. Protocol Exchange doi:10.1038/protex.2012.057 (2012).

  30. Stefanik, D.S., Friedman, L. & Finnerty, J.R. Collecting, rearing, spawning, and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat. Protoc. 8, 916–923 (2013).

    Article  Google Scholar 

  31. Magie, C.R., Daly, M. & Martindale, M.Q. Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev. Biol. 305, 483–497 (2007).

    Article  CAS  Google Scholar 

  32. Sullivan, J.C. et al. StellaBase: the Nematostella vectensis Genomics Database. Nucl. Acids Res. 34, D495–D499 (2006).

    Article  CAS  Google Scholar 

  33. Sullivan, J.C., Reitzel, A.M. & Finnerty, J.R. Upgrades to StellaBase facilitate medical and genetic studies on the starlet sea anemone, Nematostella vectensis. Nucl. Acids Res. 36, D607–D611 (2008).

    Article  CAS  Google Scholar 

  34. Urrutia, R., McNiven, M.A. & Kachar, B. Synthesis of RNA probes by the direct in vitro transcription of PCR-generated DNA templates. J. Biochem. Biophys. Methods 26, 113–120 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation grant no. MCB-0924749 to T.D.G. and J.R.F. and by the US National Institutes of Health (NIH) grant no. 1R21RR032121 to M.Q.M. F.S.W. was supported by a predoctoral grant from the Superfund Basic Research Program at Boston University (no. 5 P42 E507381) and by Warren-McLeod graduate fellowships in Marine Biology. M.J.L. was supported by a Ruth L. Kirschstein National Research Service Award (no. FHD0550002) from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

F.S.W. optimized immunofluorescence and cnidocyte-labeling protocols. M.J.L. optimized the in situ hybridization protocols. J.R.F., T.D.G. and M.Q.M. provided technical advice on protocol development. All authors participated in writing the manuscript.

Corresponding author

Correspondence to John R Finnerty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolenski, F., Layden, M., Martindale, M. et al. Characterizing the spatiotemporal expression of RNAs and proteins in the starlet sea anemone, Nematostella vectensis. Nat Protoc 8, 900–915 (2013). https://doi.org/10.1038/nprot.2013.014

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.014

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing